화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.38, No.6, 1209-1222, 2018
Synthesis of Copper-Based Nanostructures in Liquid Environments by Means of a Non-equilibrium Atmospheric Pressure Nanopulsed Plasma Jet
The influence of the liquid composition on the chemical and morphological properties of copper-based nanostructures synthesized by a non-equilibrium atmospheric plasma treatment is investigated and discussed. The synthesis approach is simple and environmentally friendly, employs a non-equilibrium nanopulsed atmospheric pressure plasma jet as a contactless cathode and a Cu foil as immersed anode. The process was studied using four distinct electrolyte solutions composed of distilled water and either NaCl+NaOH, NaCl only or NaOH only at two different concentrations, without the addition of any copper salts. CuO crystalline structures with limited impurities (e.g. Cu and Cu(OH)(2) phases) were produced from NaCl+NaOH containing solutions, mainly CuO and CuCl2 structures were synthesized in the electrolyte solution containing only NaCl and no synthesis occurred in solutions containing only NaOH. Both aggregated and dispersed nanostructures were produced in the NaCl+NaOH and NaCl containing solutions. Reaction pathways leading to the formation of the nanostructures are proposed and discussed.