화학공학소재연구정보센터
Langmuir, Vol.34, No.38, 11449-11453, 2018
Gecko-like Branched Polymeric Nanostructures from Nanoporous Templates
Here, we report a simple method to produce hierarchically shaped polymeric one-dimensional nanostructures. More specifically, dual-sized polymer nanowires are fabricated employing multibranched anodic aluminum oxide templates. By fine selection of the anodization conditions, we achieve branched nanopores having a first segment of 400 nm in diameter from which seven further 55 nm in diameter pores arise. Wetting of such nanopores with polymer melts-for example, poly(epsilon-caprolactone) and polystyrene-allows for the nanomolding of their respective inverse nanostructures, that is, dual-sized multibranched polymer nanowires that, when supported on a flat surface, strongly resemble the spatulae of geckos' toes. The structural features of the dual-sized polymer nanostructures, namely, crystalline phase, crystallinity, texture, and so on, are furthermore characterized and interpreted within the context of polymer phase transitions in confined media. Our work presents a readily applicable approach to produce soft nanomaterials of high morphological complexity, thereby with promising implications in the nanotechnology area, for example, in biomimetic solid adhesion.