화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.6, 784-791, December, 2018
통계학적 실험계획법을 이용한 수소정제용 UiO-66 흡착제 개발
Development of Adsorption Process with UiO-66 Particles for Hydrogen Purification Using Statistical Design of Experiment
E-mail:
초록
다양한 합성조건에서 UiO-66 입자를 합성하여 수소정제용 이산화탄소 흡착량에 대한 연구를 수행하였다. 이를 위하여 통계학적 실험계획법을 이용하여 실험계획을 세우고 도출된 결과를 이용하여 분석하였다. 합성시간, 온도 및 아세트산의 용량이 증가할 수록 UiO-66입자의 결정도가 증가하였다. 특히 아세트산의 용량이 입자의 결정도를 결정하는데 중요한 인자로 확인되었다. 질소흡착법으로 측정한 입자의 비표면적의 경우도 유사한 경향을 보였다. 실험계획법중 일반요인분석을 이용하여 주요 인자에 대한 주효과도 및 교호작용을 분석하였다. 또한 비선형 회귀법을 이용하여 이산화탄소 흡착량을 예측하였고, 모든 범위에서 대하여 흡착성능을 표면도와 등고선도를 통해 제시하였다.
UiO-66 particles were synthesized under various synthesis conditions to study the adsorption of carbon dioxide for hydrogen purification. For the purpose, the design and analysis of experiments was performed using statistical design of experiment method. As the synthesis time, temperature and acetic acid amount increased, the crystallinity of UiO-66 particles increased. Especially, the amount of acetic acid was confirmed as an important factor in determining the crystallinity of the particles. The specific surface area of the particles measured by the nitrogen adsorption method also showed a similar tendency. Using the general factor analysis in the experimental design method, the main effects and interactions of major factors were analyzed. In addition, the carbon dioxide adsorption capacity was predicted using a nonlinear regression method. Then, the adsorption performance was shown through surface and contour maps for all ranges.
  1. US DOE, A National Vision of America’s Transition to a Hydrogen Economy - To 2030 and Beyond, Feb. 2002.
  2. Hassmann K, Kuhne HM, Int. J. Hydrog. Energy, 18, 635 (1993)
  3. Martavaltzi CS, Lemonidou AA, Microporous Mesoporous Mater., 110, 119 (2008)
  4. Ochoa-Fernandez E, Rusten HK, Jakobsen HA, Ronning M, Holmen A, Chen D, Catal. Today, 106(1-4), 41 (2005)
  5. Eddaoudi M, Moler DB, Li H, Accounts Chem. Res., 34, 319 (2001)
  6. Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M, Yaghi OM, Chem. Soc. Rev., 38, 1257 (2009)
  7. Long JR, Yaghi OM, Chem. Soc. Rev., 38, 1213 (2009)
  8. Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi, OM, Science, 309, 1350 (2005)
  9. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP, J. Am. Chem. Soc., 130(42), 13850 (2008)
  10. Hu ZG, Nalaparaju A, Peng YW, Jiang JW, Zhao D, Inorg. Chem., 55(3), 1134 (2016)
  11. Smith SJ, Ladewig BP, Hill AJ, Lau CH, Hill MR, Scientific reports 5 (2015).
  12. Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Spectrochim. Acta, Part A, 122, 223-231(2014).
  13. Ghaedi M, Barakat EA, Asfaram A, Mirtamizdoust B, Bazrafshan AA, Hajati S, RSC Adv., 5, 42376 (2015)