화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.68, 173-179, December, 2018
Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications
E-mail:
Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide (Al2O3), silicon dioxide (SiO2), and titanium dioxide (TiO2) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the PVA-TiO2 composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.
  1. Ko Y, Kwon M, Bae WK, Lee B, Lee SW, Cho J, Nat. Commun., 8, 536 (2017)
  2. Shi S, Xu C, Yang C, Li J, Du H, Li B, Kang F, Particuology, 11, 371 (2013)
  3. Areir M, Xu Y, Harrison D, Fyson J, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 226, 29 (2017)
  4. Petty-Weeks S, Zupancic JJ, Swedo JR, Solid State Ion., 31, 117 (1988)
  5. Hashmi SA, Latham RJ, Linford RG, Schlindwein WS, Polym. Int., 47, 28 (1998)
  6. Liew CW, Ramesh S, Arof AK, Int. J. Hydrog. Energy, 39(6), 2917 (2014)
  7. Li HB, Zhang WK, Xu WQ, Zhang X, Macromolecules, 33(2), 465 (2000)
  8. Zhang J, Zhou TC, Qiao JL, Liu YY, Zhang JJ, Electrochim. Acta, 111, 351 (2013)
  9. Ma GF, Li JJ, Sun KJ, Peng H, Mu JJ, Lei ZQ, J. Power Sources, 256, 281 (2014)
  10. Yang CC, Hsu ST, Chien WC, J. Power Sources, 152(1), 303 (2005)
  11. Kakati N, Maiti J, Das G, Lee SH, Yoon YS, Int. J. Hydrog. Energy, 40(22), 7114 (2015)
  12. Yang CC, J. Membr. Sci., 288(1-2), 51 (2007)
  13. Yang CC, Wu GM, Mater. Chem. Phys., 114(2-3), 948 (2009)
  14. Li GW, Zhang W, Yang JP, Wang XP, J. Colloid Interface Sci., 306(2), 337 (2007)
  15. Zhang W, Fang YJ, Wang XP, J. Membr. Sci., 303(1-2), 173 (2007)
  16. Zuo B, Hu Y, Lu X, Zhang S, Fan H, Wang X, J. Phys. Chem. C, 117, 3396 (2013)
  17. Szubzda B, Szmaja A, Ozimek M, Mazur S, Appl. Phys. A-Mater. Sci. Process., 117, 1801 (2014)
  18. Ye YS, Cheng MY, Xie XL, Rick J, Huang YJ, Chang FC, Hwang BJ, J. Power Sources, 239, 424 (2013)