화학공학소재연구정보센터
Bioresource Technology, Vol.269, 375-383, 2018
Optimizing the configuration of integrated nutrient and energy recovery treatment trains: A new application of global sensitivity analysis to the generic nutrient recovery model (NRM) library
This paper describes the use of global sensitivity analysis (GSA) for factor prioritization in nutrient recovery model (NRM) applications. The aim was to select the most important factors influencing important NRM model outputs such as biogas production, digestate composition and pH, ammonium sulfate recovery, struvite production, product purity, particle size and density, air and chemical requirements, scaling potential, among others. Factors considered for GSA involve: 1) input waste stream characteristics, 2) process operational factors, and 3) kinetic parameters incorporated in the NRMs. Linear regression analyses on Monte Carlo simulation outputs were performed, and the impact of the standardized regression coefficients on major performance indicators was evaluated. Finally, based on the results, the paper describes the original use of GSA to obtain insight in complex nutrient recovery systems and to propose an optimal nutrient and energy recovery treatment train configuration that maximizes resource recovery and minimizes energy and chemical requirements.