화학공학소재연구정보센터
Bioresource Technology, Vol.270, 120-128, 2018
Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system
Coal chemical reverse osmosis concentrate (ROC), which is characterized by high salinity and high organics, remains as a serious environmental problem. In this study, a lab-scale three-stage membrane-aerated biofilm reactor (MABR) system was designed to treat such a ROC. The effects of influent salinity and operating parameters (pH, DO and HRT) on the treatment efficiency were discussed. The removal efficiencies of COD, NH4-N and TN under the optimal operating parameters reached to 81.01%, 92.31% and 70.72%, respectively. Simultaneous nitrification and denitrification (SND) as well as shortcut nitrogen removal were achieved. The salinity less than 3% did not induce significant decrease in treatment efficiency and microbial communities. Moreover, the dominant phyla in biofilms were Proteobacteria and Bacteroidetes. This work demonstrated MABR had great potential in ROC treatment.