화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.5, 822-833, September, 2018
노르보넨 기반 수지 시스템에서 접착촉진제가 경화속도론과 에폭시와의 접착성에 미치는 영향
Effect of Adhesion Promoters on Curing Kinetics and Adhesion to Epoxy in a Norbornene-Based Resin System
E-mail:
초록
본 연구에서는 endo-dicyclopentadiene(endo-DCPD)의 경화반응 속도 및 에폭시수지와의 접착강도를 조사하였다. Endo-DCPD와 에폭시 사이의 접착강도를 높이기 위해 노르보넨 카복실산(NCA)과 노르보넨 메탄올(NM)을 접착촉진제로 각각 사용하였다. 여러 가지 함량의 NCA 및 NM 접착촉진제를 첨가한 endo-DCPD 공단량체에 1 세대 및 2 세대 Grubbs 촉매를 사용하여 개환복분해중합(ROMP)을 통해 반응시켰으며, 이때 발생하는 승온 경화거동을 시차주사열량계(DSC)를 사용하여 분석하였다. DSC 분석법과 model free isoconversion 법을 이용하여 endo-DCPD 의 경화속도에 미치는 Grubbs 촉매와 접착촉진제의 영향을 연구하였다. 접착촉진제 사용으로 endo-DCPD와 에폭시 수지 사이의 결합강도가 증가하였으며, 이는 에폭시수지와 접착촉진제 사이의 수소결합 형성에 기인한 것으로 조사 되었다.
The cure kinetics of endo-dicyclopentadiene (endo-DCPD) and the bonding strength to epoxy were investigated in this study. To increase the bonding strength, norbornene carboxylic acid (NCA) and norbornene methanol (NM) were used as adhesion promoters. The endo-DCPD monomer containing various contents of NCA or NM adhesion promoters was reacted with the 1st generation and the 2nd generation Grubbs catalysts via a ring-opening metathesis polymerization (ROMP), and the dynamic cure behavior was measured using differential scanning calorimetry (DSC). The effects of Grubbs catalysts and adhesion promoters on the curing kinetics of endo-DCPD were characterized using the dynamic DSC analysis and the model-free isoconversion method. From the result of the adhesion test for epoxy resins with endo-DCPD, the bonding strength was increased by the adhesion promoters, which is ascribed to the hydrogen bond formation between the epoxy resin and the adhesion promoters.
  1. Hong CH, Song SW, Nam BU, Cha BJ, Kim BJ, Polym. Korea, 30(4), 311 (2006)
  2. Mol JC, J. Mol. Catal. A-Chem., 213, 39 (2009)
  3. Davidson TA, Wagener KB, J. Mol. Catal. A-Chem., 133, 67 (1998)
  4. Rule JD, Moore JS, Macromolecules, 35(21), 7878 (2002)
  5. Yang YS, Lafontaine E, Mortaigne B, Polymer, 38(5), 1121 (1997)
  6. Hayano S, Kurakata H, Tsunogae Y, Nakayama Y, Sato Y, Yasuda H, Macromolecules, 36(20), 7422 (2003)
  7. Oskam JH, Fox HH, Yap KB, Mcconville DH, Dell RO, Lichtenstein BJ, Schrock RR, J. Am. Chem. Soc., 459, 195 (1993)
  8. Schwab P, Grubbs RH, Ziller JW, J. Am. Chem. Soc., 118(1), 100 (1996)
  9. Song YK, Kim DM, Chung CM, Polym. Sci. Technol., 25(2), 121 (2014)
  10. Dry C, Smart Mater. Struct., 3, 118 (1994)
  11. Trask RS, Bond IP, Smart Mater. Struct., 15, 704 (2006)
  12. van der Zwaag S, Springer Series in Materials Science, Dordrecht, Vol 100, 2007.
  13. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S, Nature, 409(6822), 794 (2001)
  14. Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US, Adv. Mater., 22, 5424 (2001)
  15. Wilson GO, Caruso MM, Schelkopf SR, Sottos NR, White SR, Moore JS, ACS Appl. Mater. Interf., 3, 3072 (2011)
  16. Cho SH, Andersson HM, White SR, Sottos NR, Braun PV, Adv. Mater., 18(8), 997 (2006)
  17. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T, Thermochim. Acta, 355(1-2), 125 (2000)
  18. Vyazovkin S, Brown ME, Gallagher PK, Handbook Therm. Anal. Calori., 5, 503 (2008)
  19. Friedman HL, J. Polym. Sci., Part C, 6, 183 (1964)
  20. Jones AS, Rule JD, Moore JS, White SR, Sottos NR, Adv. Mater., 18, 1312 (2006)
  21. Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS, Chem. Mater., 20, 3288 (2008)
  22. Ng H, Manaszloczower I, Shmorhun M, Polym. Eng. Sci., 34(11), 921 (1994)
  23. Mauldin TC, Kessler MR, J. Therm. Anal. Calorim., 96, 705 (2009)
  24. Mondragon I, Solar L, Recalde IB, Gomez CM, Thermochim. Acta, 417(1), 19 (2004)
  25. Sbirrazzuoli N, Mititelu-Mija A, Vincent L, Alzina C, Thermochim. Acta, 447(2), 167 (2006)