화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.9, 1854-1859, September, 2018
Improved reutilization of industrial crude lysine to 1,5-diaminopentane by enzymatic decarboxylation using various detergents and organic solvents
E-mail:,
World-wide production of L-lysine has rapidly increased in recent years. In the industrial scale production, it is cost effective to minimize waste as many waste materials are generated during downstream processing. Therefore, the conversion of crude lysine to a more valuable product reduces waste emission. In this study, 1,5-diaminopentane (DAP, trivial name: cadaverine) was produced by L-lysine decarboxylation using Hafnia alvei. The conditions of enzymatic reaction were determined. In particular, the addition of specific detergent (Brij 56) was significantly affected in the bioconversion system. Addition of hydrophobic organic solvent improved the mixing of the reactants. Finally, an industrial crude form of lysine served as a substrate. The DAP conversion by analytical, feed and industrial crude Llysine was 93.9%, 90.3%, and 63.8%, respectively.
  1. Kelle R, Hermann T, Bathe B, L-lysine production, Handbook of Corynebacterium glutamicum, CRC Press, Florida (2005).
  2. Evans J, Commercial amino acids, BCC Research: Market Research Reports, BIO007L (2017). http://www.bccresearch.com.
  3. Elder M, World markets for fermentation ingredients, BCC Research: Market Research Reports, FOD020E (2018). http://www.bccresearch.com.
  4. Eggeling L, Bott M, Appl. Microbiol. Biotechnol., 99(8), 3387 (2015)
  5. Wittmann C, Becker J, Microbiol. Monogr., 5, 39 (2007)
  6. Uffmann KE, Binder M, US Patent, 6,340,486 (2002).
  7. Adkins J, Jordan J, Nielsen DR, Biotechnol. Bioeng., 110, 1726 (2015)
  8. Jeong S, Yeon YJ, Choi EG, Byun S, Cho DH, Kim IK, Kim YH, Korean J. Chem. Eng., 33(5), 1530 (2016)
  9. Chae CG, Kim YJ, Lee SJ, Oh YH, Yang JE, Joo JC, Kang KH, Jang YA, Lee H, Park AR, Song BK, Lee SY, Park SJ, Biotechnol. Bioprocess Eng., 21, 169 (2016)
  10. Li N, Chou H, Yu L, Xu Y, Biotechnol. Bioprocess Eng., 19, 965 (2014)
  11. Wang C, Zhang K, Zhongjun C, Cai H, Honggui W, Biotechnol. Bioprocess Eng., 20, 439 (2015)
  12. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A, Appl. Microbiol. Biotechnol., 82(1), 115 (2009)
  13. Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz Q, Eur. J. Soil Biol., 45, 12 (2009)
  14. Kim JH, Seo HM, Sathiyanarayanan G, Bhatia SK, Song HS, Kim J, Jeon JM, Yoon JJ, Kim YG, Park K, Yang YH, J. Ind. Eng. Chem., 46, 44 (2017)
  15. Takatsuka Y, Yamaguchi Y, Ono M, Kamio Y, J. Bacteriol., 182, 6732 (2000)
  16. Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, et al., Embo J., 30, 931 (2011)
  17. Abercrombie M, In Vitro, 6, 128 (1970)
  18. Han K, Levenspiel O, Biotechnol. Bioeng., 32, 430 (1987)
  19. Velioglu Z, Urek RO, Biotechnol. Bioprocess Eng., 21, 430 (2017)
  20. Manaargadoo-Catin M, Ali-Cherif A, Pougnas JL, Perrin C, Adv. Colloid Interface Sci., 228, 1 (2016)
  21. Hait SK, Moulik SP, J. Surfactants Deterg., 4, 303 (2001)
  22. Linke D, Methods Enzymol., 463, 603 (2009)
  23. Luche S, Santoni V, Rabilloud T, Proteomics, 3, 249 (2003)
  24. Kim SB, Yoo HY, Kim JS, Kim SW, Process Biochem., 49(12), 2203 (2014)
  25. Laane C, Boeren S, Vos K, Veeger C, Biotechnol. Bioeng., 30, 81 (1987)
  26. Gu JL, Tong HF, Sun LY, Biotechnol. Bioprocess Eng., 22, 76 (2017)
  27. Hermann T, J. Biotechnol., 104, 155 (2003)
  28. Nguyen AT, Kim WS, Korean J. Chem. Eng., 34(7), 2002 (2017)