화학공학소재연구정보센터
Langmuir, Vol.34, No.24, 7171-7179, 2018
Self-Assembled Magnetic Viruslike Particles for Encapsulation and Delivery of Deoxyribonucleic Acid
Developing nontoxic artificial carriers for stimuli-responsive capture, transport, and delivery of biomolecules is of immense scientific interest. Herein, for the first time, we synthesize a double-tailed cationic surfactant, (C16H33)(2)(CH3)(2)N+[FeCl3Br](-), which possesses magnetic properties [magnetic surfactants (Mag-Surfs)]. The time-dependent formation of virus-shaped hybrid mixed assemblies of polyoxometalates (POMs) {Mo72Fe30}/Mag-Surf with hollow-shell structures is followed. These structures serve well as robust high-surface-area shuttles, which can be manipulated with applied magnetic fields. By using cationic Mag-Surfs, the anionic POMs and DNA can be complexed in these ternary mixtures. These virus-shaped complexes act as nanoanchors and nanomotors, which can be utilized for binding, anchoring, and delivery of biomolecules, such as DNA. It is found that they have a good absorption capacity for DNA and myoglobin over 24 h, after application of a magnetic field. The realization of magnetic virus-shaped {Mo72Fe30}/Mag-Surf spheres may open possibilities for designing other functional nanoparticles, allowing effective control over the delivery/separation of biomolecules.