화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.4, 555-560, August, 2018
수분이 NaKZn-Chloride의 녹는점과 고온안정성에 미치는 영향
Effect of Moisture on the Melting Point and High-Temperature Stability of NaKZn-Chloride
E-mail:
초록
NaCl-KCl-ZnCl2 혼합물(NaKZn-Chloride)의 열물성을 조사하여 열저장 매체로서의 잠재성을 평가하였다. 고온용 축열물질로 이용하기 위해서는 축열온도 범위에서 안정된 열물성을 유지하여야 하는데, 사전실험 결과 해당 혼합물은 알려진 고온안정온도인 850 °C 보다 훨씬 낮은 온도에서 급격한 분해가 진행되었다. 이에 본 연구에서는, 흡수된 수분에 의해 축열물질의 열적 성질이 변화되는지 확인하고자 하였다. 혼합물의 수분함량에 따라 열물성이 변화되는 지를 열물성 장비로 측정하였으며, 가열-냉각 반복실험을 통해 다시 한 번 확인하였다. 그 결과 녹는 점의 경우 흡수된 수분에 관계없이 일정하지만, 고온 안정성의 경우 흡습한 샘플에서 다소 낮아지는 것을 알 수 있었다. 본 연구결과에 따라 흡습성을 가지는 고온 축열물질을 사용하는 시스템에서 수분과의 접촉을 줄임으로써 축열물질의 손실을 줄일 수 있다.
The high temperature stability of a chloride mixture, NaCl-KCl-ZnCl2 (NaKZn-Chloride), is investigated to evaluate its potential as a thermal storage material. A thermal storage media should maintain a stable thermal properties within the temperature range of heat storage. Results from an a priori experiment showed that the NaKZn-chloride is stable only up the much lower temperature, while its stability limit is reported to be 850 oC in the literature. This study aims to investigate if the thermal property is changed by the moisture absorbed in the heat storage material. The effect of moisture content on the thermal properties was measured. The results show that the melting point remains the same regardless of the amount of moisture absorbed. Meanwhile, the high temperature stability is lower for the moisture treated samples. The results of this work infer that the loss of a hygroscopic thermal storage media can be reduced by avoiding its contacts to moisture in designing high temperature thermal storage systems.
  1. Hasnain SM, Energy Conv. Manag., 39(11), 1127 (1998)
  2. Lee MH, Song YS, Rhee YW, Oh IH, HWAHAK KONGHAK, 38(3), 429 (2000)
  3. Niu X, Yu JL, Wang SZ, J. Power Sources, 188(2), 621 (2009)
  4. Velraj R, Seenjraj RV, Hafner B, Faber C, Schwarzer K, Solar Energy, 65(3), 171 (1999)
  5. Mettawee EBS, Assass GMR, Solar Energy, 81, 839 (2007)
  6. Shin JS, Cho SJ, Choi SH, Qasim F, Lee HN, Park JH, Lee WJ, Lee ES, Park SJ, Korean Chem. Eng. Res., 52(4), 459 (2014)
  7. Vignarroban K, Xu X, Arvay A, Hsu K, Kannan AM, Applied Energy, 146, 383 (2015)
  8. Yang Z, Garimella SV, Solar Energy, 84, 974 (2010)
  9. Mao A, Park JH, Han GY, Seo T, Kang Y, Korean J. Chem. Eng., 27(5), 1452 (2010)
  10. Cho YZ, Yang HC, Lee HS, Kim IT, Korean Chem. Eng. Res., 47(4), 465 (2009)
  11. Ryu HY, Jeong SM, Kim JG, Korean Chem. Eng. Res., 50(6), 939 (2012)
  12. Andika R, Kim Y, Yoon SH, Kim DH, Choi JS, Lee M, Solar Energy, 157, 552 (2017)
  13. Raade J, Padowitz D, “Inorganic Salt Heat Transfer Fluid,” US20120056125A1, Halotechnics Inc. (2012).
  14. Raade J, Vaughn J, Elkin B, “Thermal Energy Storage with Molten Salt,” US20130180520A1, Halotechnics Inc. (2013).
  15. Manga VR, Swinteck N, Bringuier S, Lucas P, Deymier P, Muralidharan K, J. Chem. Phys., 144, 094501 (2016)
  16. Li PW, Gervasio D, Lucas P, Muralidharan K, Chan CL, Hao Q, Momayez M, Kannan AM, Jeter S, Teja A, SunShot Concentrating Solar Power Program Review(2013).
  17. Vlasveld DPN, Groenewold J, Bersee HEN, Picken SJ, Polymer, 46(26), 12567 (2005)
  18. Yu YJ, Hearon K, Wilson TS, Maitland DJ, Smart Mater. Struct., 20, 085010 (2011)
  19. Roos Y, Karel M, Biotechnol. Prog., 6, 159 (1990)
  20. Meng X, Busserolles KB, Husson P, Andanson JM, New J. Chem., 40, 4492 (2016)
  21. Omaran S, Heggs P, Ding Y, Energy Procedia, 46, 317 (2014)
  22. AlQaydi MS, Delclos T, AlMheiri S, McKrell T, Calvet N, American Institute of Physics, 1734, 050002 (2016)
  23. Daejung Chemicals & Metals Co., Ltd., http://www.daejungchem.co.kr/main/main.asp.
  24. Kozawa T, Onda A, Yanagisawa K, Masuda Y, Kishi A, J. Solid State Chem., 184, 589 (2011)
  25. Tanaka H, Fujioka A, Mater. Res. Bull., 45(1), 46 (2010)
  26. Garciamartinez O, Vila E, Devidales JL, Rojas RM, Petrov K, J. Mater. Sci., 29(20), 5429 (1994)
  27. Srivastava OK, Secco EA, Can. J. Chem., 45, 579 (1967)
  28. Moezzi A, Cortie M, McDonagh A, Dalton Trans., 45, 7385 (2016)
  29. Son SH, Tsukihashi F, J. Phys. Chem. Solids, 66, 392 (2005)
  30. Wei XQ, Li QH, Li HC, Li HJ, Chen SX, New Carbon Materials, 60, 579 (2015)