화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.4, 496-523, August, 2018
톱밥으로부터 생산되는 개질 바이오오일 생산공장의 공정모사 및 경제성 분석
Process Simulation and Economic Feasibility of Upgraded Biooil Production Plant from Sawdust
E-mail:
초록
본 연구의 목표는 톱밥의 건조, 급속열분해, 바이오오일 응축, 바이오오일 수첨개질, 전기생산, 폐수처리를 포함하는 2개의 바이오오일 생산공정들에 대한 경제적 타당성을 평가하는 것이다. 첫번째 공정은 수소생산을 위한 steam-methane reforming (SMR)을 포함하는 바이오오일 생산공정이다(Case 1). 두번째 공정은 SMR을 포함하지 않고 수소를 외부로부터 공급받아 수첨개질을 수행하는 바이오오일 생산공정이다(Case 2). 상용공정모사기인 ASPEN Plus를 이용하여 이 두 공정에 대한 공정흐름도를 구축하였고, 물질 및 에너지 수지식을 계산하였다. 원료로서 40%의 수분을 포함하는 톱밥 100 t/d, 30% 자기자본비율, 자기자본에 상응하는 자본지출, 수소 구입가 $1,050/ton, 완전건조된 원료대비 수송용 연료 수율 20% (Case 1) 및 25% (Case 2) 로 가정하고, 4단계 경제성 분석기법인 4-level EP를 사용하여 기술경제성 분석을 수행하였다. 총투자비(TCI), 총생산비(TPC), 연간판매금액(ASR), 그리고 개질 바이오오일의 최소판매가격(MFSP)은 Case 1에 대하여 $22.2 million, $3.98 million/yr, $4.64 million/yr, 그리고 $1.56/l 이고, Case 2에 대하여 $16.1 million, $5.20 million/yr, $5.55 million/yr, $1.18/l로 산출되었다. 수소를 직접 생산하는 Case 1과 수소를 외부로부터 공급받는Case 2의 투자회수율(ROI)와 투자회수기간(PBP)은 큰 차이를 보여주지 않았고, Case 1과 Case 2의 원료 공급량을 1,500 t/d로 증가할 경우, ROI는 15% 이상으로 향상될 것으로 예상되었다.
The objective of this study is to evaluate the economic feasibility of two fast pyrolysis and biooil upgrading (FPBU) plants including feed drying, fast pyrolysis by fluidized-bed, biooil recovery, hydro-processing for biooil upgrading, electricity generation, and wastewater treatment. The two FPBU plants are Case 1 of an FPBU plant with steam methane reforming (SMR) for H2 generation (FPBU-HG, 20% yield), and Case 2 of an FPBU with external H2 supply (FPBUEH, 25% yield). The process flow diagrams (PFDs) for the two plants were constructed, and the mass and energy balances were calculated, using a commercial process simulator (ASPEN Plus). A four-level economic potential approach (4-level EP) was used for techno-economic analysis (TEA) under the assumption of sawdust 100 t//d containing 40% water, 30% equity, capital expenditure equal to the equity, H2 price of $1050/ton, and hydrocarbon yield from dried sawdust equal to 20 and 25 % for Case 1 and 2, respectively. TCI (total capital investment), TPC (total production cost), ASR (annual sales revenue), and MFSP (minimum fuel selling price) of Case 1 were $22.2 million, $3.98 million/yr, $4.64 million/yr, and $1.56/l, respectively. Those of Case 2 were $16.1 million, $5.20 million/yr, $5.55 million/yr, and $1.18/l, respectively. Both ROI (return on investment) and PBP (payback period) of Case 1(FPBU-HG) and Case 2(FPBU-EH) were the almost same. If the plant capacity increases into 1,500 t/d for Case 1 and Case 2, ROI would be improved into 15%/yr.
  1. Shemfe MB, Gu S, Ranganathan P, Fuel, 143, 361 (2015)
  2. Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN, Noor IM, Energy Conv. Manag., 76, 1073 (2013)
  3. Do TX, Lim YI, Renew. Energy, 90, 307 (2016)
  4. Do TX, Lim YI, Jang S, Chung HJ, Bioresour. Technol., 189, 224 (2015)
  5. Do TX, Lim YI, Yeo H, Energy Conv. Manag., 80, 525 (2014)
  6. Do TX, Lim YI, Yeo H, Lee UD, Choi YT, Song JH, Energy, 70, 547 (2014)
  7. Wright MM, Daugaard DE, Satrio JA, Brown RC, Fuel, 89, S2 (2010)
  8. Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164 (2010)
  9. Dutta A, Sahir A, Tan E, Humbird D, Snowden-Swan LJ, et al., NREL/TP-5100-62455, U.S. Department of Energy, Oak Ridge(2015).
  10. Park YB, Lim H, Woo HC, Korean Chem. Eng. Res., 54(1), 94 (2016)
  11. Jones S, Meyer P, Snowden-Swan L, Padmaperuma A, Tan E, Dutta A, Jacobson J, Cafferty K, NREL/TP-5100-61178, U.S. Department of Energy, Oak Ridge(2013).
  12. Christensen P, Dysert LR, AACE International Recommended Practice No. 18R-97(2011).
  13. Do TX, Lim YI, Cho H, Shim J, Yoo J, Rho K, Choi SG, Park C, Park BY, Renew. Energy, 119, 45 (2018)
  14. Lim YI, Choi J, Moon H, Kim K, Korean Chem. Eng. Res., 55(2), 201 (2016)
  15. Park YC, Lee TY, Park JH, Ryu HJ, Korean Chem. Eng. Res., 47(1), 65 (2009)
  16. Chun DH, Kim SD, Rhim YJ, Lee SH, Korean Chem. Eng. Res., 49(5), 639 (2011)
  17. Chun DH, Kim SD, Rhim YJ, Lee SH, Korean Chem. Eng. Res., 49(5), 639 (2011)
  18. Shin JH, Lee LS, Lee SH, Korean Chem. Eng. Res., 54(4), 501 (2016)
  19. Byun JW, Han JH, Korean Chem. Eng. Res., 55(5), 609 (2017)
  20. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D, 4th ed., Prentice Hall, New York(2012).
  21. Towler G, Sinnott R, Chemical Engineering Design, 2nd ed., Elsevier, Boston(2008).
  22. Do TX, Lim YI, Lee J, Lee W, Chem. Eng. Res. Des., 106, 222 (2016)
  23. Upadhye AA, Qi W, Huber GW, AlChE J., 57(9), 2292 (2011)
  24. Peters MS, Timmerhaus KD, West RE, 5th ed., McGraw-Hill, New York(2003).
  25. Kemp IC, Pinch Analysis and Process Integration, 2nd ed., Butterworth-Heinemann, Oxford(2006).
  26. Luyben WL, Comput. Chem. Eng., 67, 133 (2014)
  27. Humbird D, Davis R, Olthof B, Worley M, Sexton D, NREL/TP-5100-47764, U.S. Department of Energy, Oak Ridge(2011).
  28. Yoo YD, Kim SH, Cho W, Mo Y, Song T, Korean Chem. Eng. Res., 52(6), 796 (2014)
  29. Lozowski D, Ondrey G, Jenkins S, Bailey MP, Chemical Engineering, Access Intelligence LLC, New York(2015).
  30. Perry RH, Green DW, 7th ed., McGraw-Hill, New York(1999).
  31. Wang B, Gebreslassie BH, You FQ, Comput. Chem. Eng., 52, 55 (2013)
  32. Couper JR, Process Engineering Economics, 1st ed., Marcel Dekker, New York(2003).
  33. Ruth M, Laffen M, Timbario TA, NREL/TP-6A1-46612, U.S. Department of Energy, Oak Ridge(2009).