화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.3, 298-302, June, 2018
질소 도핑된 이산화티타늄의 가시광 광촉매 활성 연구
Visible Light Induced Photocatalytic Activity of N-doped TiO2
E-mail:
초록
질소가 도핑된 이산화티타늄의 광촉매 특성을 알아보았다. 질소가 도핑된 이산화티타늄에 대하여 자외선 및 가시광선 분위기에서 메틸렌블루 광촉매 분해를 수행하였다. XPS 분석을 통해 제조한 TiO2에서 질소(N)가 산소(O)와 치환되었음을 확인하였다. UV-Vis DRS 분석 결과 질소가 도핑된 무정형 TiO2 시료에서는 가시광선을 거의 흡수하지 않고 자외선을 흡수하는 반면 무정형/anatase 혼재 TiO2 시료의 경우 가시광선 흡수가 상당히 증가하였다. 질소가 도핑된 anatase TiO2 시료는 자외선 및 가시광선 조사에서 메틸렌블루 광분해 반응이 나타났다. 그러나 가시광선 조사에서 분해율은 자외선 조사의 분해율보다 낮았다. 무정형/anatase 혼재 TiO2 시료의 경우 자외선과 가시광선 조사에서 anatase TiO2 시료의 분해율보다 높았다. 이러한 결과는 anatase TiO2 시료에 비해 3배 정도 큰 무정형/anatase 혼재 TiO2 시료의 높은 표면적이 질소 도핑된 작은 anatase 입자와 관련이 있음을 보여준다.
Photocatalytic properties of nitrogen doped titanium dioxide were investigated. Photocatalytic degradation of methylene blue under UV and visible light was carried out to characterize N-doped TiO2. The result of XPS indicated that nitrogen atoms substitute for oxygen sites within the crystal structure of TiO2. In the UV-Vis DRS spectra, N-doped amorphous TiO2 absorbed UV light with little absorption of visible light, while the absorption of visible light of amorphous/anatase TiO2 remarkably increased. Methylene blue photocatalytic degradation appeared by the irradiation of UV or visible light onto the N-doped anatase phase of TiO2. However, the degradation rate of visible light was lower than that of UV light. The photocatalytic degradation rate of the amorphous/anatase TiO2 sample was higher than that of the anatase TiO2. These results indicate that the high surface area of amorphous/anatase TiO2 sample, which was about three times larger than those of the anatase TiO2 sample, may be related to small particles of N-doped anatase TiO2.
  1. Jung MK, A Study on the Synthesis of Metal Ion-doped TiO2 Photocatalyst by Sol-Gel Method and Photocatalytic Degradation, MS Thesis, Sogang University (2009).
  2. Gang YG, Preparation of M-N-TiO2 Photocatalysts and Their Photoactivity under Visible Light, MS Thesis, Myongji University (2010).
  3. Kim SM, Yun TK, Hong DI, J. Korean Chem. Soc., 49, 567 (2009)
  4. Jeong KS, J. Environ. Sci., 12, 319 (2003)
  5. Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
  6. Jung D, J. Korean Chem. Soc., 54, 120 (2010)
  7. Pham HH, Wang LW, Phys. Chem. Chem. Phys., 17, 541 (2015)
  8. Kimling MC, Chen D, Caruso RA, J. Mater. Chem. A, 3, 3768 (2015)
  9. Shalom M, Dor S, Ruhle S, Grinis L, Zaban A, J. Phys. Chem. C, 113, 3895 (2009)
  10. Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S, J. Mater. Chem., 11, 1694 (2001)
  11. Kumar S, Fedorov AG, Gole JL, Appl. Catal. B: Environ., 57(2), 93 (2005)
  12. Shen Y, Xiong T, Du H, Jin H, Shang J, Yang K, J. Sol-Gel Sci. Technol., 50, 98 (2009)
  13. Chen XB, Burda C, J. Am. Chem. Soc., 130(15), 5018 (2008)
  14. Kim Y, Bai BC, Lee YS, Appl. Chem. Eng., 23(3), 308 (2012)
  15. Elghniji K, Ksibi M, Elaloui E, J. Ind. Eng. Chem., 18(1), 178 (2012)
  16. Cozzoli PD, Kornowski A, Weller H, J. Am. Chem. Soc., 125(47), 14539 (2003)
  17. Machado AEH, Borges KA, Silva TA, Santos LM, Borges MF, Machado WA, Caixeta BP, Oliveira SM, Trovo AG, Patrocinio AOT, Solar Radiation Applications, 87-90, InTech, London, UK (2015).
  18. Valentin CD, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E, Chem. Phys., 339, 44 (2007)
  19. Sakthivel S, Janczarek M, Kisch H, J. Phys. Chem. B, 108(50), 19384 (2004)