화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.3, 258-263, June, 2018
초미분말 석회석 현탁액을 이용한 전자산업 폐수 불소이온 제거연구
Removal of Fluoride Ions from Electronic Industrial Wastewater Using Lime Stone Slurry
E-mail:
초록
본 연구에서는 전자산업폐수에 함유되어 있는 불소성분을 제거하기 위하여 미세 침강성 석회석을 적용해보고자 하였다. 석회석의 입자크기는 평균 0.96 μm이었으며, 질량 기준으로 70%가 함유된 수용액상의 pH는 10이었다. 현탁액의 침강속도는 2 mL/hr로 나타났다. 본 연구의 시험용 석회석 수용액은 폐수 중화와 불소이온 제거능력 면에서 기존의 액상소석회와 동등 이상의 성능을 보여주었다. 추가적인 알칼리 증량제의 투입양에 따라 pH 7에 도달할 수 있는 시험용 칼슘원의 양은 기존의 석회수보다 적었다. 또한 불화수소로 고정시킬 수 있는 양도 미분말 석회석이 석회수보다 큰 것으로 나타났다. 또한, Minteq 평형모델링으로부터 다양한 불소와 칼슘화합물 형성이 예상되었다.
This study attempted to utilize ultrafine precipitated calcium carbonate for fluoride removal from the wastewater of electronics industries. An average particle size of the calcium carbonate was 0.96 μm, and pH of the aqueous slurry was 10 with 70% in mass. The suspension solution showed approximately 2 mL/hr of the sedimentation rate. The present calcium carbonate solution could be comparable to the conventional aqueous calcium source, Ca(OH)2, for the neutralization and removal of fluoride ions. Depending on the amount of an additional alkali source, less amounts of test Ca-source slurries were required to reach the solution pH of 7.0 than that of using the aqueous calcium hydroxide. It was also found from XRD analysis that more calcium fluoride precipitates were formed by the addition of calcium carbonate solution rather than that of calcium hydroxide. In addition, Minteq equilibrium modelling estimated various ion complexes of fluoride and calcium in this process.
  1. Yamasaki K, US Patent 5,580,458A (1996).
  2. Mondal NK, Bhaumik R, Datta JK, Environ. Process., 3(3), 195 (2016)
  3. Rao NM, Bhaskaran CS, J. Fluor. Chem., 41, 17 (1988)
  4. Lee G, Chen C, Yang ST, Ahn WS, Microporous Mesoporous Mater., 127(3), 152 (2010)
  5. Dayananda D, Sarva VR, Prasad SV, Arunachalam J, Ghosh NN, Chem. Eng. J., 248, 430 (2014)
  6. Benefield LD, Judkins JF, Weand BL, Process Chemistry for Water and Wastewater Treatment, p. 405-421, Prentice-Hall, USA (1982).
  7. Genuino HC, Opembe NN, Njagi EC, McClain S, Suib SL, J. Ind. Eng. Chem., 18(5), 1529 (2012)
  8. Nam GW, MS Thesis, Chungbuk University, Cheongju, Korea (2009).
  9. Lee MJ, Park SJ, Kim CG, Yoon TI, J. Korean Soc. Environ. Eng., 24, 2151 (2002)
  10. Cho KC, Lee SI, J. Korean Soc. Environ. Adm., 9, 257 (2003)
  11. Jung JY, Korean Patent 1020110100829 (2013).
  12. Fan X, Parker DJ, Smith MD, Water Res., 37, 4929 (2003)
  13. Kim SH, Kim KY, Ryu HD, Lee SI, J. Korean Soc. Environ. Eng., 33(5), 307 (2011)
  14. Reardon EJ, Wang Y, Environ. Sci. Technol., 34(15), 3247 (2000)
  15. Nath SK, Dutta RK, Indian J. Chem. Technol., 17(2), 120 (2010)
  16. Salah N, Albarbi ND, Habib SS, Lochab SP, J. Nanomater., 2015, 1 (2015)