화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.3, 404-409, June, 2018
녹색 촉매반응을 위한 코발트 옥사이드/그래핀의 계층적 다공성 3D 젤
Hierarchical Porous 3D gel of the Co3O4/graphene with Enhanced Catalytic Performance for Green Catalysis
E-mail:
초록
나노사이즈의 유기물과 무기물을 조합하여 계층적인 크기의 기공을 가지는 촉매의 개발은 서로 다른 특징을 갖는 물질의 구조제어를 통한 반응물의 이동 통로를 만들어 주어 다양한 촉매에 적용 될 수 있다. 본 연구에서는 계층적 크기의 기공을 가지기 때문에 PET 글리콜리시스에서 우수한 촉매 활성을 보일 수 있는 코발트 옥사이드/그래핀 3D 젤을 수열합성법에 의하여 제조하였다. 코발트 옥사이드와 그래핀 시트의 상호작용에 의하여 3D 젤을 얻었고, 다양한 크기의 기공 구조는 넓은 활성 면적을 주어 코발트 옥사이드의 효과적인 촉매반응을 가능하게 하였다. 촉매로 사용하였을 때 코발트와 그래핀의 시너지 효과는 제조한 물질의 구조적 장점을 가지도록 하였고, 제조한 물질을 PET 분해반응의 BHET의 높은 전환률(97.5%), 빠른 PET 분해속도(94.5%, 60 min), 반응 안정성(93.1%, 18회 재사용) 등 우수한 촉매 활성능을 보였다.
The integration of organic and inorganic building blocks into hierarchical porous architectures makes potentially desirable catalytic material in many catalytic applications due to their combination of dissimilar components and well-constructed reactant transport path. In this study, we prepared the hierarchical porous Co3O4@graphene 3D gel by hydrothermal method to achieve high catalytic performance in PET glycolysis reaction. Obtained Co3O4@graphene 3D gel consisted of interconnected networks of Co3O4 and graphene sheets, providing large number of accessible active sites for efficient catalytic reaction. These structural merits from synergistic effect of Co3O4 and graphene gave a high performance in the PET degradation reaction giving high conversion yield of BHET, fast degradation rate of PET, and remarkable stability.
  1. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
  2. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
  3. Imran M, Kim DH, Al-Masry WA, Mahmood A, Hassan A, Haider S, Ramay SM, Polym. Degrad. Stabil., 98, 904 (2013)
  4. Wang Q, Geng Y, Lu X, Zhang S, ACS Sustainable Chem. Eng., 3, 340 (2015)
  5. Khoonkari M, Haghighi AH, Sefidbakht Y, Shekoohi K, Ghaderian A, Int. J. Polym. Sci., 2015, 1 (2015)
  6. Duque-Ingunza I, Lopez-Fonseca R, de Rivas B, Gutierrez-Ortiz JI, J. Chem. Technol. Biotechnol., 89(1), 97 (2014)
  7. Vitkauskiene I, Makuska R, CHEMIJA., 19, 29 (2008)
  8. Lopez-Fonseca R, Duque-Ingunza I, de Rivas B, Arnaiz S, Gutierrez-Ortiz JI, Polym. Degrad. Stabil., 95, 1022 (2010)
  9. Choi BG, Chang SJ, Lee YB, Bae JS, Kim HJ, Huh YS, Nanoscale, 4, 5924 (2012)
  10. Baydi ME, Poillerat G, Rehspringer JL, Gautier JL, Koenig JF, Chartier P, J. Solid State Chem., 11, 109 (1994)
  11. Sinha AK, Seelan S, Okumura M, Akita T, Tsubota S, Haruta M, J. Phys. Chem. B, 109(9), 3956 (2005)
  12. Kumar NA, Dar MA, Gul R, Baek JB, Mater. Today, 18, 286 (2015)
  13. Choi BG, Park H, Park TJ, Yang MH, Kim JS, Jang SY, Heo NS, Lee SY, Kong J, Hong WH, ACS Nano, 4, 2910 (2010)
  14. Sangalang A, Bartolome L, Kim DH, Polym. Degrad. Stabil., 115, 45 (2015)
  15. Yang MH, Jeong JM, Lee KG, Kim DH, Lee SJ, Choi BG, Biosens. Bioelectron., 89, 612 (2017)
  16. Choi BG, Huh YS, Hong WH, Kim HJ, Park HS, Nanoscale, 4, 5394 (2012)
  17. Yang MH, Jeong JM, Huh YS, Choi BG, Compos. Sci. Technol., 121, 123 (2015)
  18. Park G, Bartolome L, Lee KG, Lee SJ, Kim DH, Park TJ, Nanoscale, 4, 3879 (2012)
  19. Lee K,G, Lee S, Chang SG, Choi BG, Seo J, Sangalang A, Kim DH, Park TJ, Lee MK, Lee SJ, Lee H, Small, 11, 4292 (2015)