화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.3, 409-416, May, 2018
글루카민기 변성 킬레이트 수지의 합성 및 보론 제거 특성 향상
Synthesis of Modified Chelate Resins Containing N-methyl-D-glucamine and Improvement of Boron Removing Characteristics
E-mail:
초록
수처리 시스템에 적용하기 위하여 보론 제거용 소재로 poly(St-co-DVB) 가교중합체, poly(St-co-MMA-co-DVB) 가교공중합체 및 poly(St-co-GMA-co-DVB) 가교공중합체를 현탁중합으로 합성하였다. 이러한 가교중합체에 대하여 클로로메틸화 반응을 거쳐 글루카민기가 도입된 킬레이트 수지를 제조하였으며, 이들의 구조적 차이에 따른 보론 제거특성을 평가하였다. 각각의 킬레이트 수지는 평균 입경 500 μm 구형으로서 다공성을 나타냈다. Poly(Stco-DVB) 기반의 킬레이트 수지에 비하여 poly(St-co-MMA-co-DVB) 및 poly(St-co-GMA-co-DVB) 기반의 킬레이트수지의 비표면적과 세공용적이 더 크게 나타났다. 이러한 3종류 킬레이트 수지에 대한 보론 이온의 흡착량은 각각6.9, 6.7, 10.2 mg/g-resin으로 나타나 poly(St-co-GMA-co-DVB) 기반의 킬레이트 수지의 보론 제거 특성이 가장 우수하였다.
Poly(St-co-DVB) crosslinked polymer, poly(St-co-MMA-co-DVB) crosslinked copolymer, and poly(St-co- GMA-co-DVB) crosslinked copolymer were synthesized by suspension polymerization in order to apply these to the water treatment system. These crosslinked polymers were subjected to the subsequent chloromethylation reaction to prepare chelate resins having glucamine groups and the boron removal characteristics of chelate resins were evaluated depending on their structural differences. Each of chelate resins exhibited porous spherical particle shape having an average particle size of 500 nm. Poly(St-co-MMA-co-DVB) and poly(St-co-GMA-co-DVB) based chelate resins showed both larger specific surface area and pore volume than poly(St-co-DVB) based chelate resin. The adsorption amounts of boron ions on these three different chelate resins were 6.9, 6.7, and 10.2 mg/g-resin, respectively. Therefore, poly(St-co- GMA-co-DVB) based chelate resin showed the best boron removal characteristics.
  1. Jung BY, Kang SH, Lee JC, Hwang TS, Polym. Korea, 30(1), 45 (2006)
  2. Simonnot MO, Christophe C, Miguel N, Christophe R, Sardine M, Jauffret H, Water Res., 34, 109 (2000)
  3. Kabay N, Sarp S, Yuksel M, Arar O, Bryjak M, React. Funct. Polym., 67(12), 1643 (2007)
  4. Rodarte D, Smith RS, Oil and Gas Facilities, p 12, October, 2014.
  5. Yan CY, Yi WT, Ma PH, Deng XC, Li FQ, J. Hazard. Mater., 154(1-3), 564 (2008)
  6. Kabay N, Sarp S, Yuksel M, Kitis M, Koseoglu H, Arar O, Bryjak M, Semiat R, Desalination, 223(1-3), 49 (2008)
  7. Wang L, Qi T, Gao Z, Zhang Y, Chu J, React. Funct. Polym., 67(3), 202 (2007)
  8. Busch M, Marston C, Prabakaran C, Proceedings of European Desaliantion Society Conference on Desalination and Environment, Santa Margherita, Italy, May, 2005.
  9. Kavak D, J. Hazard. Mater., 163(1), 308 (2009)
  10. Kunin R, PreussInd AF, Ind. Eng. Chem. Prod. Res. Dev., 3, 304 (1964)
  11. Bicak N, Koza G, Yusuf Y, J. Polym. Mater., 8, 189 (1991)
  12. Tamura S, Takase K, Hisayama H, JP 52121692 (1977).
  13. Park IH, Bang YK, Kim KM, Joo HJ, Polym. Korea, 27(4), 330 (2003)
  14. Hwang TS, Lee JH, Lee MJ, Polym. Korea, 25(4), 451 (2001)
  15. Savaskan S, Besirli N, Hazer B, J. Appl. Polym. Sci., 59(10), 1515 (1996)
  16. Park IH, Jung JC, Hwang SC, Joo JO, Angew. Makromol. Chem., 197, 117 (1992)
  17. Park IH, Suh JM, Angew. Makromol. Chem., 239, 121 (1996)
  18. Park IH, Rhee JM, Jung YS, Angew. Makromol. Chem., 267, 27 (1999)