화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.62, 329-332, June, 2018
Cathodic biocatalyst consisting of laccase and gold nanoparticle for improving oxygen reduction reaction rate and enzymatic biofuel cell performance
E-mail:,
New catalyst for promoting oxygen reduction reaction (ORR) and enzymatic biofuel cell (EBC) performance is suggested. The catalyst consist of laccase (LAC) and gold nanoparticle (GNP)- naphthalenethiol (NPT), which are linked to polyethyleneimine (PEI) and carbon nanotube (CNT) (CNT/PEI/[GNP-NPT]/LAC). Its onset potential and ORR rate are improved due to adoptions of PEI and GNP-NPT. Namely, CNT/PEI induces more immobilization of LACs and GNP-NPT acts as electron relay between CNP and NPT by thiol-gold bond and between CNT/PEI and LACs by electron collection effect. Even in EBC measurement, maximum power density of EBC using CNT/PEI/[GNP-NPT]/LAC is highest as 13 mW cm-2.
  1. Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
  2. Choi HS, Kim DS, Thapa LP, Lee SJ, Kim SB, Cho J, Park C, Kim SW, Korean J. Chem. Eng., 33(12), 3434 (2016)
  3. Zebda A, Cosnier S, Alcaraz JP, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P, Sci. Rep., 3, 1516 (2013)
  4. Tsujimura S, Kamitaka Y, Kano K, Fuel Cells, 7(6), 463 (2007)
  5. Ivnitski DM, Khripin C, Luckarift HR, Johnson GR, Atanassov P, Electrochim. Acta, 55(24), 7385 (2010)
  6. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI, Biochemistry, 72(10), 1136 (2007)
  7. Raseda N, Park J, Ryu K, Korean J. Chem. Eng., 33(10), 3011 (2016)
  8. Nazaruk E, Smolinski S, Swatko-Ossor M, Ginalska G, Fiedurek J, Rogalski J, Bilewicz R, J. Power Sources, 183(2), 533 (2008)
  9. Pita M, Shleev S, Ruzgas T, Fernandez VM, Yaropolov AI, Gorton L, Electrochem. Commun., 8(5), 747 (2006)
  10. Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC, Biosens. Bioelectron., 23(8), 1229 (2008)
  11. Adam C, Scodeller P, Grattieri M, Villalba M, Calvo EJ, Bioelectrochemistry, 109, 101 (2016)
  12. Lopez RJ, Babanova S, Ulyanova Y, Singhal S, Atanassov P, ChemElectroChem, 1(1), 241 (2014)
  13. Cao X, Zhang R, Tan WM, Wei C, Wang J, Liu ZM, Chen KQ, Quyang PK, Korean J. Chem. Eng., 33(5), 1653 (2016)
  14. Rahman SF, Min K, Park SH, Park JH, Yoo JC, Park DH, Korean J. Chem. Eng., 33(12), 3442 (2016)
  15. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
  16. Ivnitski D, Artyushkova K, Atanassov P, Bioelectrochemistry, 74(1), 101 (2008)
  17. Lee EJ, Choi JH, Um SH, Oh BK, Korean J. Chem. Eng., 34(4), 1129 (2017)
  18. Gutierrez-Sanchez C, Pita M, Vaz-Dominguez C, Shleev S, De Lacey AL, J. Am. Chem. Soc., 134(41), 17212 (2012)
  19. Holmberg S, Rodriguez-Delgado M, Milton RD, Ornelas-Soto N, Minteer SD, Parra R, Madou MJ, ACS Catal., 5(12), 7507 (2015)
  20. Kizling M, Dzwonek M, Olszewski B, Ba˛cal P, Tymecki Ł, Wie˛ckowska A, Stolarczyk K, Bilewicz R, Biosens. Bioelectron., 95, 1 (2017)
  21. Gutierrez-Sanchez C, Jia WZ, Beyl Y, Pita M, Schuhmann W, De Lacey AL, Stoica L, Electrochim. Acta, 82, 218 (2012)
  22. Cosnier S, Holzinger M, Le Goff A, Front. Bioeng. Biotechnol., 45 (2014).
  23. Bourourou M, Holzinger M, Elouarzaki K, Le Goff A, Bossard F, Rossignol C, Djurado E, Martin V, Curtil D, Chaussy D, Maaref A, Cosnier S, Chem. Commun., 51(78), 14574 (2015)
  24. Christwardana M, Chung Y, Kwon Y, NPG Asia Mater., e386 (2017).
  25. Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8(17), 9201 (2016)
  26. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 30128 (2016)
  27. Dagys M, Haberska K, Shleev S, Arnebrant T, Kulys J, Ruzgas T, ELECOM, 12(7), 933 (2010)