화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.62, 26-39, June, 2018
Slug flow in microchannels: Numerical simulation and applications
E-mail:
This paper reviews the state-of-the-art numerical techniques employed in the literature for modeling slug flow in microchannels. The proposed solutions in literature for overcoming some of the drawbacks of the numerical methods are presented. Additionally, literature covering specific applications such as enhancement of heat transfer and mixing is reviewed to provide further insight into the transport mechanisms and their applications. Digital microfluidics, as a means of slug manipulation and control, is introduced in the following section of the paper. The application of thermocapillary, magnetic, electric, optical and acoustic forces is elaborated in particular.
  1. Ottino JM, Wiggins S, Philos. Trans. Math. Phys. Eng. Sci., 923 (2004).
  2. Teh SY, Lin R, Hung LH, Lee AP, Lab Chip, 8(2), 198 (2008)
  3. Manshadi MKD, Khojasteh D, Mohammadi M, Kamali R, Int. J. Numer. Model. Electron. Netw. Dev. Fields, 29(5), 845 (2016)
  4. Kreutzer MT, Kapteijn F, Moulijn JA, Heiszwolf JJ, Chem. Eng. Sci., 60(22), 5895 (2005)
  5. Kurimoto R, Nakazawa K, Minagawa H, Yasuda T, Exp. Therm. Fluid Sci. (2017).
  6. Mikaelian D, Haut B, Scheid B, Microfluid. Nanofluid., 19(4), 899 (2015)
  7. Serizawa A, Feng Z, Kawara Z, Exp. Therm. Fluid Sci., 26(6), 703 (2002)
  8. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, Sadowski DL, Int. J. Multiph. Flow, 25(3), 377 (1999)
  9. Santos RM, Kawaji M, Int. J. Multiph. Flow, 36(4), 314 (2010)
  10. Khojasteh D, Bordbar A, Kamali R, Marengo M, Int. J. Comput. Fluid Dyn., 31(6) (2017)
  11. Rosengarten G, Harvie DJE, Cooper-White J, Appl. Math. Model., 30(10), 1033 (2006)
  12. Taassob A, Manshadi MKD, Bordbar A, Kamali R, J. Braz. Soc. Mech. Sci. Eng., 6(39), 2013 (2017)
  13. Talimi V, Muzychka YS, Kocabiyik S, Int. J. Multiph. Flow, 39, 88 (2012)
  14. Gunther A, Jensen KF, Lab Chip, 6(12), 1487 (2006)
  15. Zhu P, Wang L, Lab Chip, 17(1), 34 (2017)
  16. Xi HD, Zheng H, Guo W, Ganan-Calvo AM, Ai Y, Tsao CW, Zhou J, Li W, Huang Y, Nguyen NT, Tan SH, Lab Chip, 17(5), 751 (2017)
  17. Chong ZZ, Tan SH, Ganan-Calvo AM, Tor S B, Loh NH, Nguyen NT, Lab Chip, 16(1), 35 (2016)
  18. Che ZZ, Wong TN, Nguyen NT, Int. J. Heat Mass Transf., 55(7-8), 1947 (2012)
  19. Ufer A, Mendorf M, Ghaini A, Agar DW, Chem. Eng. Technol., 34(3), 353 (2011)
  20. Srinivasan V, Khandekar S, Sadhana, 42(4), 607 (2017)
  21. Han Y, Shikazono N, Int. J. Heat Fluid Flow, 30(5), 842 (2009)
  22. Ma S, Sherwood JM, Huck WT, Balabani S, Lab Chip, 14(18), 3611 (2014)
  23. Liu DS, Wang SD, Chem. Eng. Process., 47(12), 2098 (2008)
  24. Bretherton FP, J. Fluid Mech., 10(02), 166 (1961)
  25. Aussillous P, Quere D, Phys. Fluids, 12(10), 2367 (2000)
  26. Klaseboer E, Gupta R, Manica R, Phys. Fluids, 26(3), 032107 (2014)
  27. Cherukumudi A, Klaseboer E, Khan SA, Manica R, Microfluid. Nanofluid., 19(5), 1221 (2015)
  28. Han Y, Shikazono N, Int. J. Multiph. Flow, 35(10), 896 (2009)
  29. Chen H, Meng Q, Li J, Appl. Phys. Lett., 107(14), 141608 (2015)
  30. Che Z, Wong TN, Nguyen NT, Int. J. Therm. Sci., 64, 204 (2013)
  31. Abdollahi A, Sharma RN, Vatani A, Int. Commun. Heat Mass Transf., 84, 66 (2017)
  32. Hodges SR, Jensen OE, Rallison JM, J. Fluid Mech., 501, 279 (2004)
  33. Lac E, Sherwood JD, J. Fluid Mech., 640, 27 (2009)
  34. Jakiela S, Korczyk PM, Makulska S, Cybulski O, Garstecki P, Phys. Rev. Lett., 108(13), 134501 (2012)
  35. Gupta R, Leung SSY, Manica R, Fletcher DF, Haynes BS, Chem. Eng. Sci., 92, 180 (2013)
  36. Sajeesh P, Doble M, Sen AK, Biomicrofluidics, 8(5), 054112 (2014)
  37. Yue J, Rebrov EV, Schouten JC, Lab Chip, 14(9), 1632 (2014)
  38. Kreutzer MT, Wei W, Kapteijn F, Moulijn JA, Heiszwolf JJ, Proceedings of the First International Conference on Microchannels and Minichannels, January, 2003, pp. 153.
  39. Walsh E, Muzychka Y, Walsh P, Egan V, Punch J, Int. J. Multiph. Flow, 35(10), 879 (2009)
  40. Warnier MJF, De Croon MHJM, Rebrov EV, Schouten JC, Microfluid. Nanofluid., 8(1), 33 (2010)
  41. Jovanovic J, Zhou WY, Rebrov EV, Nijhuis TA, Hessel V, Schouten JC, Chem. Eng. Sci., 66(1), 42 (2011)
  42. Wang X, Yong Y, Yang C, Mao ZS, Li D, Microfluid. Nanofluid., 16(1-2), 413 (2014)
  43. Ładosz A, Rigger E, von Rohr PR, Microfluid. Nanofluid., 20(3), 49 (2016)
  44. Jakiela S, Lab Chip, 16(19), 3695 (2016)
  45. Talimi V, Muzychka YS, Kocabiyik S, Int. J. Heat Mass Transf., 55(23-24), 6463 (2012)
  46. Taha T, Cui ZF, Chem. Eng. Sci., 61(2), 665 (2006)
  47. Fischer M, Juric D, Poulikakos D, J. Heat Transf., 132(11), 112402 (2010)
  48. Araujo JDP, Miranda JM, Campos JBLM, Int. J. Chem. React. Eng., 13(4), 541 (2015)
  49. Che ZZ, Wong TN, Nguyen NT, Yang C, Int. J. Heat Mass Transf., 86, 455 (2015)
  50. Asadolahi AN, Gupta R, Fletcher DF, Haynes BS, Chem. Eng. Sci., 66(22), 5575 (2011)
  51. Urbant P, Leshansky A, Halupovich Y, Microfluid. Nanofluid., 4(6), 533 (2008)
  52. Bandara T, Cheung SC, Rosengarten G, Comput. Therm. Sci. Int. J., 7(1) (2015)
  53. Magnini M, Thome JR, Int. J. Therm. Sci., 110, 119 (2016)
  54. Li Y, Reddy RK, Kumar CS, Nandakumar K, Biomicrofluidics, 8(5), 054125 (2014)
  55. Ozkan A, Erdem EY, Microfluid. Nanofluid., 19(5), 1101 (2015)
  56. Hoang DA, van Steijn V, Portela LM, Kreutzer MT, Kleijn CR, Comput. Fluids, 86, 28 (2013)
  57. Abadie T, Aubin J, Legendre D, J. Comput. Phys., 297, 611 (2015)
  58. Tezduyar TE, Comput. Methods Appl. Mech. Eng., 195(23), 2983 (2006)
  59. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ, J. Comput. Phys., 169(2), 708 (2001)
  60. Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S, J. Comput. Phys., 152(2), 423 (1999)
  61. Bonometti T, Magnaudet J, Int. J. Multiph. Flow, 33(2), 109 (2007)
  62. Brackbill JU, Kothe DB, Zemach C, J. Comput. Phys., 100(2), 335 (1992)
  63. Gupta R, Fletcher DF, Haynes BS, Chem. Eng. Sci., 64(12), 2941 (2009)
  64. Mehdizadeh A, Sherif SA, Lear WE, Int. J. Heat Mass Transf., 54(15-16), 3457 (2011)
  65. Pan Z, Weibel JA, Garimella SV, Numer. Heat Transf. A-Appl., 67(1), 1 (2015)
  66. Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30(1), 329 (1998)
  67. Liu J, Nguyen NT, Micro Nanosyst., 2(3), 193 (2010)
  68. Riaud A, Wang K, Luo GS, Chem. Eng. Sci., 99, 238 (2013)
  69. Li Q, Luo KH, Kang QJ, He YL, Chen Q, Liu Q, Prog. Energy Combust. Sci., 52, 62 (2016)
  70. Alapati S, Kang S, Suh YK, J. Mech. Sci. Technol., 23(9), 2492 (2009)
  71. Chen L, Kang QJ, Mu YT, He YL, Tao WQ, Int. J. Heat Mass Transf., 76, 210 (2014)
  72. Shan X, Chen H, Phys. Rev. E, 47, 1815 (1993)
  73. Sakanova A, Keian CC, Zhao JY, Int. J. Heat Mass Transf., 89, 59 (2015)
  74. Tuckerman DB , Pease RFW, IEEE Electron Device Lett., 2(5), 126 (1981)
  75. Asthana A, Zinovik I, Weinmueller C, Poulikakos D, Int. J. Heat Mass Transf., 54(7-8), 1456 (2011)
  76. Sui Y, Teo CJ, Lee PS, Chew YT, Shu C, Int. J. Heat Mass Transf., 53(13-14), 2760 (2010)
  77. Rostami J, Abbassi A, Saffar-Avval M, Appl. Therm. Eng., 82, 318 (2015)
  78. Abed WM, Whalley RD, Dennis DJC, Poole RJ, Int. J. Heat Mass Transf., 88, 790 (2015)
  79. Sakr M, Heat Mass Transf., 51(1), 129 (2015)
  80. Naphon P, Int. Commun. Heat Mass Transf., 34(1), 62 (2007)
  81. Xie Y, Shen Z, Zhang D, Lan J, J. Electron. Packag., 136(2), 021001 (2014)
  82. Shafeie H, Abouali O, Jafarpur K, Ahmadi G, Appl. Therm. Eng., 58(1), 68 (2013)
  83. Ansari D, Husain A, Kim KY, J. Thermophys. Heat Transf., 24(4), 849 (2010)
  84. Wu Z, Sunden B, Renew. Sust. Energ. Rev., 40, 11 (2014)
  85. Jung JY, Oh HS, Kwak HY, Int. J. Heat Mass Transf., 52(1-2), 466 (2009)
  86. Salman BH, Mohammed HA, Kherbeet AS, Int. Commun. Heat Mass Transf., 39(8), 1195 (2012)
  87. Salman BH, Mohammed HA, Kherbeet AS, Int. Commun. Heat Mass Transf., 59, 88 (2014)
  88. Bandara T, Nguyen NT, Rosengarten G, Chem. Eng. Sci., 126, 283 (2015)
  89. Betz AR, Attinger D, Int. J. Heat Mass Transf., 53(19-20), 3683 (2010)
  90. Talimi V, Muzychka YS, Kocabiyik S, Int. J. Heat Mass Transf., 62, 752 (2013)
  91. Dai ZH, Guo ZY, Fletcher DF, Haynes BS, Chem. Eng. Sci., 138, 140 (2015)
  92. Zhang JZ, Fletcher DF, Li W, Int. J. Heat Mass Transf., 103, 45 (2016)
  93. GUI NGJ, Stanley C, Nguyen N, Rosengarten G, Int. J. Comput. Methods Exp. Meas., 6(2), 291 (2018)
  94. Karthikeyan K, Sujatha L, Sudharsan NM, Int. J. Chem. React. Eng. (2017).
  95. Nguyen NT, Wu Z, J. Micromech. Microeng., 15(2), R1 (2005)
  96. Bordbar A, Taassob A, Kamali R, Can. J. Chem. Eng. (2017), doi:http://dx.doi.org/10.1002/cjce.23113 (in press).
  97. Cortelezzi L, Ferrari S, Dubini G, Microfluid. Nanofluid., 21(3), 31 (2017)
  98. Capretto L, Cheng W, Hill M, Zhang X, Microfluidics, Springer, Berlin Heidelberg, 2011, pp. 27.
  99. Song H, Chen DL, Ismagilov RF, Angew. Chem.-Int. Edit., 45(44), 7336 (2006)
  100. Su YH, Chen GW, Yuan Q, AIChE J., 58(6), 1660 (2012)
  101. Orbay S, Ozcelik A, Lata J, Kaynak M, Wu M, Huang TJ, J. Micromech. Microeng., 27(1), 015008 (2016)
  102. Tice JD, Song H, Lyon AD, Ismagilov RF, Langmuir, 19(22), 9127 (2003)
  103. Sharma S, Srisa-Art M, Scott S, Asthana A, Cass A, Microfluid. Diagn. Methods Protocols, 207 (2013).
  104. Tanthapanichakoon W, Aoki N, Matsuyama K, Mae K, Chem. Eng. Sci., 61(13), 4220 (2006)
  105. Tice JD, Lyon AD, Ismagilov RE, Anal. Chim. Acta, 507(1), 73 (2004)
  106. Lin XY, Wang K, Zhang JS, Luo GS, Chem. Eng. Sci., 127, 60 (2015)
  107. Zhao SF, Riaud A, Luo GS, Jin Y, Cheng Y, Chem. Eng. Sci., 131, 118 (2015)
  108. Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF, Appl. Phys. Lett., 83(2), 4664 (2003)
  109. Song H, Tice JD, Ismagilov RF, Angew. Chem., 115(7), 792 (2003)
  110. Harshe YM, van Eijk MJ, Kleijn CR, Kreutzer MT, Boukany PE, RSC Adv., 6(101), 98812 (2016)
  111. Yesiloz G, Boybay MS, Ren CL, Anal. Chem., 89(3), 1978 (2017)
  112. Jiao Z, Nguyen NT, Huang X, Sens. Actuators A-Phys., 140(2), 145 (2007)
  113. Karapetsas G, Sahu KC, Sefiane K, Matar OK, Langmuir, 30(15), 4310 (2014)
  114. Nguyen NT, Huang X, Jpn. J. Appl. Phys., 44(2R), 1139 (2005)
  115. Jiao Z, Nguyen NT, Huang X, Ang YZ, Microfluid. Nanofluid., 3(1), 39 (2007)
  116. Jiao ZJ, Huang XY, Nguyen NT, J. Micromech. Microeng., 18(4), 045027 (2008)
  117. Nguyen NT, Pang WW, Huang X, J. Phys. Conf. Ser., 34(1), 967 (2006)
  118. Jiao Z, Nguyen NT, Huang X, J. Micromech. Microeng., 17(9), 1843 (2007)
  119. Xi HD, Guo W, Leniart M, Chong ZZ, Tan SH, Lab Chip, 16(16), 2982 (2016)
  120. Wehking JD, Chew L, Kumar R, Appl. Phys. Lett., 103(5), 054101 (2013)
  121. Wehking JD, Kumar R, Lab Chip, 15(3), 793 (2015)
  122. Koh WH, Lok KS, Nguyen NT, J. Fluids Eng., 135(2), 021302 (2013)
  123. Lehmann U, Hadjidj S, Parashar VK, Vandevyver C, Rida A, Gijs MA, Sens. Actuators B-Chem., 117(2), 457 (2006)
  124. Nguyen NT, Microfluid. Nanofluid., 12(1-4), 1 (2012)
  125. Ray A, Varma VB, Wang Z, Wang Z, Jayaneel PJ, Sudharsan NM, Ramanujan RV, IEEE Magn. Lett., 7, 1 (2016)
  126. Beyzavi A, Nguyen NT, J. Phys. D-Appl. Phys., 42(1), 015004 (2008)
  127. Beyzavi A, Nguyen NT, J. Micromech. Microeng., 20(1), 015018 (2009)
  128. Chakrabarty D, Dutta S, Chakraborty N, Ganguly R, Sens. Actuators B-Chem., 236, 367 (2016)
  129. Song C, Tan SH, Micromachines, 8(5), 152 (2017)
  130. Lv JA, Liu YY, Wei J, Chen EQ, Qin L, Yu YL, Nature, 537(7619), 179 (2016)
  131. Schmid L, Franke T, Lab Chip, 13(9), 1691 (2013)
  132. Chong ZZ, Tor SB, Loh NH, Wong TN, Ganan-Calvo AM, Tan SH, Nguyen NT, Lab Chip, 15(4), 996 (2015)
  133. Sesen M, Alan T, Neild A, Lab Chip (2017).
  134. Ma Z, Teo AJ, Tan SH, Ai Y, Nguyen NT, Micromachines, 7(12), 216 (2016)
  135. Sesen M, Alan T, Neild A, Lab Chip, 15(14), 3030 (2015)
  136. Khojasteh D, Kazerooni M, Salarian S, Kamali R, J. Ind. Eng. Chem., 42, 1 (2016)