화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.9, 4355-4370, 2018
Numerical study of flow distribution uniformity for the optimization of gradient porosity configuration of porous copper fiber sintered felt for hydrogen production through methanol steam reforming micro-reactor
A macroscopic numerical method is proposed to study the flow distribution uniformity of a novel porous copper fiber sintered felt (PCFSF), which has gradient porosities and was developed as the methanol steam reforming micro-reactor catalyst support for hydrogen production for fuel cell applications. The macroscopic porous media developed by the ANSYS/FLUENT software is used to represent the PCFSF. Our results indicate that the gradient porosity can reshape the flow distribution of PCFSFs greatly, thus producing significant influence on their performance. It is further revealed that, for a PCFSF with a determined gradient porosity configuration but different reactant feed directions, the velocity uniformity can be used as a quantitative criterion to evaluate the performance of hydrogen production. Furthermore, new gradient PCFSFs are produced according to the flow distribution of original gradient PCFSFs. The preliminary experimental results of the new gradient PCFSFs of 0.8-0.9-0.7 and 0.7-0.9-0.8 exhibit better methanol conversion and H-2 flow rate. This indicates that the numerical method can be used for the optimization of PCFSFs' gradient porosity configuration, which consists of the shape and position of the interfaces between different porosity portions, the number of interfaces and the porosity distribution in different portions. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.