화학공학소재연구정보센터
Computers & Chemical Engineering, Vol.111, 16-26, 2018
Rigorous design of reaction-separation processes using disjunctive programming models
A systematic and efficient method for the rigorous design of complex chemical processes is significant in the chemical industry. In this paper, a superstructure-based optimization approach for the rigorous and simultaneous design of reaction and separation processes using generalized disjunctive programming (GDP) models is presented. In the reactor network, disjunctions for conditional reactors are introduced where the balance and reaction kinetic equations are applied only if the reactor is selected. Based on the proposed reactor disjunctions, two different reactor superstructures are developed and employed. In addition, the GDP representation of distillation columns is used to model the separation network. The reliability and efficiency of the proposed optimization method are demonstrated on two case studies, i.e., one cyclohexane oxidation process and one benzene chlorination process. The flowsheet structure and process-unit operating conditions are simultaneously optimized to minimize the total annual cost of the processes. (C) 2017 Elsevier Ltd. All rights reserved.