화학공학소재연구정보센터
Applied Surface Science, Vol.439, 660-671, 2018
Absolute band structure determination on naturally occurring rutile with complex chemistry: Implications for mineral photocatalysis on both Earth and Mars
Rutile is the most common and stable form of TiO2 that ubiquitously existing on Earth and other terrestrial planets like Mars. Semiconducting mineral such as rutile-based photoredox reactions have been considered to play important roles in geological times. However, due to the inherent complexity in chemistry, the precision determination on band structure of natural rutile and the theoretical explanation on its solar-driven photochemistry have been hardly seen yet. Considering the multiple minor and trace elements in natural rutile, we firstly obtained the single-crystal crystallography, mineralogical composition and defects characteristic of the rutile sample by using both powder and single crystal X-ray diffraction, electron microprobe analysis and X-ray photoelectron spectroscopy. Then, the band gap was accurately determined by synchrotron-based O K-edge X-ray absorption and emission spectra, which was firstly applied to natural rutile due to its robustness on compositions and defects. The absolute band edges of the rutile sample was calculated by considering the electronegativity of the atoms, band gap and point of zero charge. Besides, after detecting the defect energy levels by photoluminescence spectra, we drew the schematic band structure of natural rutile. The band gap (2.7 eV) of natural rutile was narrower than that of synthetic rutile (3.0 eV), and the conduction and valence band edges of natural rutile at pH = pH(PZC) were determined to be -0.04 V and 2.66 V (vs. NHE), respectively. The defect energy levels located at nearly the middle position of the forbidden band. Further, we used theoretical calculations to verify the isomorphous substitution of Fe and V for Ti gave rise to the distortion of TiO6 octahedron and created vacancy defects in natural rutile. Based on density functional theory, the narrowed band gap was interpreted to the contribution of Fe-3d and V-3d orbits, and the defect energy state was formed by hybridization of O-2p and Fe/V/Ti-3d orbits in the forbidden band. Therefore, excitons can be created under visible light. The conduction band electrons and valence band holes enabled the photoreduction of CO2 to organic molecules (e.g., acetic acid and CH4) and photooxidative generation of oxidants (e.g., (OH)-O-center dot, O-2 and ClO4-) via rutile photocatalysis, respectively. This study underlies the capability of natural semiconducting minerals in solar energy utilization and the implications of their photocatalysis in both the origin of primitive life on Earth and formation of modern environments on Mars. (C) 2018 Elsevier B.V. All rights reserved.