화학공학소재연구정보센터
Applied Surface Science, Vol.440, 351-358, 2018
New functionalized IRMOF-10 with strong affinity for methanol: A simulation study
Grand Canonical Monte Carlo (GCMC) method simulation combined with density functional theory (DFT) calculation were used to investigate the methanol adsorption in IRMOF-10, with nitrogen and metaldoping functionalizations in order to understand the underlying performance of MOFs in methanol adsorption. New doped IRMOF-10s (M-2N-IRMOF-10, M = Be, Mg, Ca, Sr, Ba) were theoretically constructed by binding nitrogen atoms of organic linkers in N-doping IRMOF-10 (2N-IRMOF-10) with various metal atoms. 2N-IRMOF-10 shows only a little higher methanol capacity in the measured pressure range. However, M-2N-IRMOF-10s (especially Be-2N-IRMOF-10) demonstrate much higher methanol capacity due to the stronger interaction between the induced Be atoms and methanol molecules. Furthermore, the obtained results can be attributed to the new adsorption sites created by metal-doping, as revealed by the more exothermic binding energies (BEs) on Be-sites (-160.8 kJ/mol) than Zn-sites (-19.4 kJ/mol). According to the simulation results, it can be concluded that functionalized IRMOF-10 are capable of enhancing the adsorption capacity of methanol at pressure from 0 to 12 kPa at 298 K. This study provides a new functionalized method to effectively enhance methanol adsorption capacity of MOFs, which might extend the application of MOFs on methanol adsorption in the near future. (C) 2018 Elsevier B.V. All rights reserved.