화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.2, 249-256, March, 2018
무기항균제 및 난연제를 함유한 PVC 복합소재의 항균 및 난연 특성
Antimicrobial Activity and Flame Retardancy of Polyvinyl Chloride Composite Containing Inorganic Bacteriocide and Aluminum Trihydroxide
E-mail:,
초록
본 연구는 세균에 대한 항균효과와 난연 특성을 갖는 신소재의 개발이 목표이다. 제올라이트의 기공에 은과 아연을 포함한 무기항균제(inorganic bacteriocide, IB)와 친환경 무기계 난연제인 aluminum trihydroxide(ATH)를 함유한 PVC 복합소재인 PVC/IB/ATH를 제조하였다. 두 종류의 세균으로 탁도 분석법, 진탕 배양법, drop-test, 이중 염색법을 사용하여 PVC/IB/ATH 복합소재의 항균효과 실험결과 99%의 항균효과를 확인하였다. 또한 한계산소농도 지수와 열중량 분석으로 PVC/IB/ATH 복합소재의 난연 특성을 확인한 바, ATH와 무기항균제의 알루미늄 성분에 의존적으로 증가하였다. 또한 PVC/IB/ATH 복합소재의 열적 특성은 소폭 증가하였다. 결론적으로, PVC/IB/ATH의 응용은 의료 산업, 항균 시스템 그리고 난연 물질과 같은 다양한 분야에 이용될 것으로 기대한다.
The aim of this study is to develop new materials with antimicrobial effect and flame-retardant properties. PVC/IB/ATH, a PVC composite material containing inorganic bacteriocide (IB) with silver and zinc in the zeolite pores, and aluminum trihydroxide (ATH), an environmentally friendly inorganic flame-retardant, was prepared. The antimicrobial effect of PVC/IB/ATH composite material was confirmed to be 99% as a result of turbidity analysis, shaking culture, drop-test, and double staining test using two kinds of bacteria. The flame-retardant properties of PVC/IB/ATH composites were investigated by limiting oxygen concentration index and thermogravimetric analysis, and they were increased depending on the aluminum content of ATH and IB agent. Also, the thermal properties of PVC/IB/ATH composites were slightly increased. In conclusion, the application of PVC/IB/ATH is expected in various fields such as medical industry, antibacterial system and flame-retardant materials.
  1. Seyfriedsberger G, Rametsteiner K, Kern W, Eur. Polym. J., 42, 3383 (2006)
  2. Monterio DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camarogo ER, Barbosa DB, Int. J. Antimicrob. Agents, 34, 103 (2009)
  3. Spacciapoli P, Buxton D, Rothstein D, Friden P, J. Periodont. Res., 36, 108 (2001)
  4. Park SH, Lee JY, Choi JH, Park TH, Moon SB, Lee HS, Bang DS, Yang SA, Jhee KH, Elastom. Compos., 50, 223 (2015)
  5. Choi NW, Jo YJ, Kim CK, Polym. Korea, 40(2), 245 (2016)
  6. Seil JT, Webster TJ, Acta Biomater., 7, 2579 (2011)
  7. Sevinc BA, Hanley L, J. Biomed. Mater. Res. Part B, 94, 22 (2010)
  8. Lee HS, Park SH, Lee JY, Park YR, Jeong HB, Jhee KH, Bang DS, Elastom. Compos., 51, 147 (2016)
  9. Hull TR, Witkowski A, Hollingbery L, Polym. Degrad. Stabil., 96, 1462 (2011)
  10. Xin ZX, Zhang ZX, Pal K, Byeon JU, Lee SH, Kim JK, Mater. Des., 31, 589 (2010)
  11. Ji J, Zhang W, J. Biomed. Mater. Res. Part A, 88, 448 (2008)
  12. Vartiainen J, Ratto M, Paulussen S, Packag. Technol. Sci., 18, 243 (2005)
  13. Akhavan O, Azimirad R, Safa S, Hasani E, J. Mater. Chem., 21, 9634 (2011)
  14. Mondal T, Bhowmick AK, Krishnamoorti R, J. Mater. Chem., 22, 22481 (2012)
  15. Akhavan O, Ghaderi E, ACS Nano, 4, 5731 (2010)
  16. Akhavan O, Ghaderi E, Carbon, 50, 1853 (2012)
  17. Park D, Wang J, Klibanov AM, Biotechnol. Prog., 22(2), 584 (2006)
  18. ISO 4589 2, Plastic . Determination of burning behavior by Oxygen index: Part 2: Ambient-temperature test.
  19. Zhao YH, Zhang YF, Wu ZK, Bai SL, Composites Part B, 84, 52 (2016)
  20. Husheng J, Wensheng H, Liqiao W, Bingshe X, Xuguang L, Dent. Mater., 24, 244 (2008)
  21. Zampino D, Ferreri T, Puglisi C, Mancuso M, Zaccone R, Scaffaro R, Bennardo D, J. Mater. Sci., 46(20), 6734 (2011)
  22. Galeano B, Korff E, Nicholson WL, Appl. Environ. Microbiol., 69, 4329 (2003)
  23. Casemiro LA, martins CHG, Panzeri FC, Souza P, Panzeri H, Gerodontology, 25, 187 (2008)
  24. Cowan MM, Abshire KZ, Houk SL, Evans SM, J. Ind. Microbiol. Biotechnol., 30, 102 (2003)
  25. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P, Mater. Sci. Eng. Rep., 63, 100 (2009)
  26. Wang W, Zhang W, Chen H, Zhang S, Li J, Constr. Build. Mater., 79, 337 (2015)