화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.59, 266-276, March, 2018
Effect of various shaped magnesium hydroxide particles on mechanical and biological properties of poly(lactic-co-glycolic acid) composites
E-mail:,
Five different shapes of magnesium hydroxide (Mg(OH)2) particles (Plate-S, Plate-N, Disk, Whisker, and Fiber) were synthesized and added to biopolymer (i.e., Poly(lactic-co-glycolic acid) (PLGA)) composite to improve their mechanical and biological properties. The PLGA composite films including Mg(OH)2 particles were prepared by a solvent casting method. Their mechanical and biological properties were compared according to the composites containing different shapes of Mg(OH)2 particles. Among them, the fiber shape of Mg(OH)2 provided the highest mechanical strength, and anti-inflammation and antibacterial activity to PLGA films among other forms. This study demonstrated a new strategy for the design of biomaterials by controlling the form of inorganic additives.
  1. Nair LS, Laurencin CT, Prog. Polym. Sci, 32, 762 (2007)
  2. Sabir MI, Xu XX, Li L, J. Mater. Sci., 44(21), 5713 (2009)
  3. Katti D, Lakshmi S, Langer R, Laurencin C, Adv. Drug Deliv. Rev., 54, 933 (2002)
  4. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V, J. Control. Release, 161, 505 (2012)
  5. Cui F, Cun D, Tao A, Yang M, Shi K, Zhao M, Guan Y, J. Control. Release, 107, 310 (2005)
  6. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny J, Polym. Degrad. Stabil., 95, 2126 (2010)
  7. Bose RJ, Lee SH, Park H, Biomater. Res., 20, 34 (2016)
  8. Anderson JM, Shive MS, Adv. Drug Deliv. Rev., 64, 72 (2012)
  9. Anderson JM, Rodriguez A, Chang DT, Foreign Body Reaction to Biomaterials, Elsevier, pp.86, 2008,
  10. Lee Y, Kwon J, Khang G, Lee D, Tissue Eng. A, 18, 1967 (2012)
  11. Hickey T, Kreutzer D, Burgess D, Moussy F, Biomaterials, 23, 1649 (2002)
  12. Kum CH, Cho Y, Joung YK, Choi J, Park K, Seo SH, Park YS, Ahn DH, Han DK, J. Mater. Chem. B, 1, 2764 (2013)
  13. Kum CH, Seo SH, Kang SN, Park BJ, Ahn DJ, Joung YK, Han DK, Macromol. Res., 22(9), 1032 (2014)
  14. Kang EY, Lih E, Kim IH, Joung YK, Han DK, Biomater. Res., 20, 1 (2016)
  15. Yan H, Zhang XH, Wei LQ, Liu XG, Xu BS, Powder Technol., 193(2), 125 (2009)
  16. Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Guan X, ACS Appl. Mater., 5, 1137 (2013)
  17. Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel MV, JOM, 61, 31 (2209)
  18. Wen W, Luo B, Qin X, Li C, Liu M, Ding S, Zhou C, Appl. Surf. Sci., 322, 215 (2015)
  19. Kang KH, Lee DK, J. Ind. Eng. Chem., 20(4), 2580 (2014)
  20. Li YD, Sui M, Ding Y, Zhang GH, Zhuang J, Wang C, Adv. Mater., 12(11), 818 (2000)
  21. Sun X, Xiang L, Zhu W, Liu Q, Cryst. Res. Technol., 43, 1057 (2008)
  22. Wang P, Li C, Gong H, Wang H, Liu J, Ceram. Int., 37, 3365 (2011)
  23. Duan J, Huang X, Wang E, Mater. Lett., 60, 1918 (2006)
  24. Liu B, Lee JY, J. Phys. Chem. B, 109(50), 23783 (2005)
  25. Phuruangrat A, Thongtem T, Thongtem S, Mater. Lett., 63, 1538 (2009)
  26. Cao ZQ, Jiang SY, Nano Today, 7(5), 404 (2012)
  27. Mathew AP, Oksman K, Sain M, J. Appl. Polym. Sci., 97(5), 2014 (2005)
  28. Szazdi L, Pukanszky B, Vancso GJ, Pukanszky B, Polymer, 47(13), 4638 (2006)
  29. Kutz M, Standard Handbook of Biomedical Engineering and Design, McGraw-Hill, 2003.
  30. Osman MA, Atallah A, Muller M, Suter UW, Polymer, 42(15), 6545 (2001)
  31. Frogley MD, Ravich D, Wagner HD, Compos. Sci. Technol., 63, 1647 (2003)
  32. Li H, Chang J, Compos. Sci. Technol., 65, 2226 (2005)
  33. Bender ML, Chem. Rev., 60, 53 (1960)
  34. Rydz J, Sikorska W, Kyulavska M, Christova D, Int. J. Mol. Sci., 16, 564 (2014)
  35. Li Y, Chi L, Stechschulte DJ, Dileepan KN, Microvasc. Res., 61, 253 (2001)
  36. Engineer C, Parikh J, Raval A, Trends Biomater. Artif. Organs, 25, 79 (2011)
  37. Seino Y, Ikeda U, Ikeda M, Yamamoto K, Misawa Y, Hasegawa T, Kano S, Shimada K, Cytokine, 6, 87 (1994)
  38. Dong C, Cairney J, Sun Q, Maddan OL, He G, Deng Y, J. Nanopart. Res., 12, 2101 (2010)