화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.1, 67-76, February, 2018
PDMS-HNT과 PDMS-mHNT 복합막을 통한 CO2와 N2의 기체투과
Gas Permeation of CO2 and N2 through PDMS-HNT and PDMS-mHNT Composite Membranes
E-mail:
초록
본 연구에서는 PDMS에 halloysite nanotube (HNT)와 modified HNT (mHNT)를 첨가하여 PDMS-HNT 복합막과 PDMS-mHNT 복합막을 제조하였다. 그리고 물리 화학적 특성을 조사하기 위하여 FT-IR, XRD, TGA, SEM을 사용하였고, N2와 CO2 기체에 대한 투과도와 선택도 성질을 고찰하였다. 특히, 35 ℃에서 PDMS-HNT 10 wt% 복합막과 PDMS-mHNT 5 wt% 복합막은 가장 높은 CO2/N2 선택도와 CO2 투과도를 보였다. 전체적으로 PDMS-HNT 복합막과 PDMS-mHNT 복합막은 PDMS 막보다 CO2/N2 선택도가 증가하였다.
In this study, PDMS-HNT and PDMS-mHNT composite membranes were prepared by the addition of halloysite nanotube (HNT) and modified HNT (mHNT) to PDMS. To investigate the physico-chemical characteristics of composite membranes, analytical methods such as FT-IR, XRD, TGA, and SEM were utilized. The gas permeability and selectivity properties of N2 and CO2 were evaluated. In particular, the PDMS-HNT with 10 wt% HNT and PDMS-mHNT with 5 wt% mHNT showed the highest CO2/N2 selectivity and CO2 permeability at 35 ℃, respectively. Overall, PDMS-HNT and PDMS-mHNT composite membranes improved the CO2/N2 selectivity compared to that of using PDMS membrane.
  1. Freeman BD, Macromolecules, 32(2), 375 (1999)
  2. Robeson LM, J. Membr. Sci., 62, 165 (1991)
  3. Peng F, Lu L, Sun H, Wang Y, Liu J, Jiang Z, Chem. Mater., 17, 6790 (2005)
  4. Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
  5. Shen Y, Lua AC, Chem. Eng. J., 192, 201 (2012)
  6. Murali RS, Ismail AF, Rahman MA, Sridhar S, Sep. Purif. Technol., 129, 1 (2014)
  7. Mahajan R, Koros WJ, Polym. Eng. Sci., 42(7), 1420 (2002)
  8. Ismail AF, Rahim NH, Mustafa A, Matsuura T, Ng BC, Abdullah S, Hashemifard SA, Sep. Purif. Technol., 80(1), 20 (2011)
  9. Cong HL, Zhang JM, Radosz M, Shen YQ, J. Membr. Sci., 294(1-2), 178 (2007)
  10. Ge L, Zhu ZH, Rudolph V, Sep. Purif. Technol., 78(1), 76 (2011)
  11. Yoon HW, Lee HD, Park HB, Membr. J., 25(5), 375 (2013)
  12. Xie Y, Chang PR, Wang S, Yu J, Ma X, Carbohydr. Polym., 83, 186 (2011)
  13. Silva RT, Pasbakhsh P, Goh KL, Chai SP, Ismail H, Polym. Test, 32, 265 (2013)
  14. Murali RS, Padaki M, Matsuura T, Abdullah MS, Ismail AF, Sep. Purif. Technol., 132, 187 (2014)
  15. Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, Lee H, Sohn D, J. Phys. Chem., 116, 18230 (2012)
  16. Deng SQ, Zhang JN, Ye L, Wu JS, Polymer, 49(23), 5119 (2008)
  17. Du M, Guo B, Jia D, Eur. Polym. J., 42, 1362 (2006)
  18. Du ML, Guo BC, Lei YD, Liu MX, Jia DM, Polymer, 49(22), 4871 (2008)
  19. Hedicke-Hochstotter K, Lim GT, Altstadt V, Compos. Sci. Technol., 69, 330 (2009)
  20. Pasbakhsh P, Ismail H, Fauzi MNA, Bakar AA, Appl. Clay Sci., 48, 405 (2010)
  21. Atayde CM, Doi I, Phys. Status Solidi C, 7, 189 (2010)
  22. Raharjo RD, Freeman BD, Paul DR, Sarti GC, Sanders ES, J. Membr. Sci., 306(1-2), 75 (2007)
  23. Merkel TC, Gupta RP, Turk BS, Freeman BD, J. Membr. Sci., 191(1-2), 85 (2001)
  24. Sadrzadeh M, Shahidi K, Mohammadi T, J. Membr. Sci., 342(1-2), 327 (2009)
  25. Defontaine G, Barichard A, Letaief S, Feng CY, Matsuura T, Detellier C, J. Colloid Interface Sci., 343(2), 622 (2010)
  26. Nour M, Berean K, Balendhran S, Ou JZ, Du Plessis J, McSweeney C, Bhaskaran M, Sriram S, Kalantar-zadeh K, Int. J. Hydrog. Energy, 38(25), 10494 (2013)
  27. Nour M, Berean K, Griffin MJ, Matthews GI, Bhaskaran M, Sriram S, Kalantar-zadeh K, Sens. Actuators B-Chem., 161, 982 (2012)
  28. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(3), 415 (2000)
  29. Hashemifard SA, Ismail AF, Matsuura T, J. Colloid Interface Sci., 359(2), 359 (2011)
  30. Yeom CK, Lee SH, Lee JM, J. Appl. Polym. Sci., 78(1), 179 (2000)