화학공학소재연구정보센터
Applied Surface Science, Vol.427, 874-882, 2018
Emission and evaporation properties of 75 at.% Re-25 at.% W mixed matrix impregnated cathode
We present a comprehensive study on the phase, emission performance, surface composition, chemical states and evaporation properties of a 75 at.% Re-25 at.% W (75Re) mixed matrix impregnated cathode by several modern analyzers, including XRD, electron emission test device, in situ AES, XPS and Quartz Crystal Oscillation Instrument (QCOI). On the basis of experimental results, the adsorption energy and charge transfer of the Ba-O dipole adsorbed on cathode surface was investigated by the first-principles density functional theory calculations. The in situ AES analyses indicate that the atomic ratio of Ba:O of the active emission layer on the cathode surface converged to 3:2 for a conventional Ba-W cathode and to about 3: 1 for the 75Re cathode. Due to the larger adsorption energy of Ba and Ba-O on 75Re cathode surface, the total evaporation rate of Ba and BaO in the 75Re cathode is much lower than that for the Ba-W cathode, which is agreed favorably with the experimental evaporation data. Our characterizations and calculations suggest that rhenium in the matrix of impregnated cathodes improves the stability of Ba-O dipole on the cathode surface and enhances the emission capability substantially. (C) 2017 Elsevier B.V. All rights reserved.