화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.6, 720-725, December, 2017
M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) 촉매상에서 합성가스 제조를 위한 메탄의 부분산화반응
Partial Oxidation of Methane to Syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) Catalysts
E-mail:
초록
메탄의 부분 산화반응으로부터 합성가스를 제조하기 위해 M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm)를 제조하였다. 촉매는 BET, TEM, XPS의 기기를 사용하여 특성화하였다. M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm)의 BET 비표면적, 평균 기공 크기는 각각 538.8, 504.3, 447.3 m2/g과 6.4, 6.8, 7.1 nm이었다. SBA-15 담체의 TEM 이미지는 중기공성 육방정계 구조를 보여주었고, Ce(10)-Ni(5)/SBA-15 촉매는 Ni와 Ce의 금속 입자가 SBA-15 담체의 구속효과에 의해서 담체 표면상에 균일하게 분포하고 있었다. XPS 분석으로 촉매 표면상에 격자산소(O2-, O-)와 Ce4+과 Ce3+의 두개의 산화상태가 존재함을 알 수 있었다. 촉매상에서 메탄의 부분 산화 반응으로부터 합성가스의 수율은 1 atm, 973 K, CH4/O2 = 2, GHSV = 1.08 × 105 mL/gcat..h에서 52.9% H2와 21.7% CO이었으며, 75 h의 반응에서도 이 값을 일정하게 유지하였다. M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm)촉매는 합성가스 수율이 같은 경향을 보여주었다. 이러한 결과는 조촉매인 Ce, Nd, Sm의 Redox 반응이 촉매의 수율과 안정성을 향상시킨다는 것을 보여주었다.
M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts were prepared for the partial oxidation of methane (POM) to syngas. The catalysts were characterized by BET, TEM, and XPS. The BET-specific surface area and average pore size for M(10)-Ni(5)/ SBA-15(M=Ce, Nd, Sm) were 538.8, 504.3, and 447.3 m2/g and 6.4, 6.8, and 7.1 nm, respectively. TEM results showed that the mesoporous hexagonol structure was formed for SBA-15, while the homogeneous dispersion of Ni and Ce particles on the surface was formed for Ce(10)-Ni(5)/SBA-15 caused by the confinment effect of SBA-15. XPS data confirmed that Ce4+ and Ce3+ on the surface catalyst have two oxidation states due to the lattice oxygen species (O2-, O-). The yields of POM to syngas over Ce(10)-Ni(5)/SBA-15 were 52.9% H2 and 21.7% CO at 1 atm, 973 K, CH4/O2 = 2, GHSV = 1.08 × 105 mL/gcat..h, and these values were kept constant even after 75 h on streams. The same tendency of syngas yields was observed for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm). These results confirm that the redox reaction of promoters including Ce, Nd, and Sm enhanced the stability and yield of catalysts.
  1. Horn R, Schlogl R, Catal. Lett., 145, 23 (1915)
  2. Seo HJ, Kang UI, Kwon OY, J. Ind. Eng. Chem., 20(4), 1332 (2014)
  3. Taifan W, Baltrusaitis J, Appl. Catal. B: Environ., 198, 525 (2016)
  4. Gharlbi M, Zangeneh FT, Yaripour F, Sahebdelfar S, Appl. Catal. B: Environ., 443-444, 8 (2012)
  5. Tang P, Zhu Q, Wu Z, Ma D, Energy Environ. Sci., 7, 2580 (2014)
  6. Tian H, Li X, Zeng L, Gong J, ACS Catal., 5, 4959 (2015)
  7. Zhang S, Muratsugu S, Ishiguro N, Tada M, ACS Catal., 3, 1855 (2013)
  8. de la Hoz JMM, Balbuena PB, ACS Catal., 5, 215 (2015)
  9. Cai W, Yu J, Anand C, Vinu A, Jaroniec M, Chem. Mater., 23, 1147 (2011)
  10. Wu ZX, Li QA, Peng D, Webley PA, Zhao DY, J. Am. Chem. Soc., 132(34), 12042 (2010)
  11. Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. Am. Chem. Soc., 130(11), 3465 (2008)
  12. Wang N, Huang, Shen K, Huang L, Yu X, Qian W, Chu W, ACS Catal., 3, 1638 (2013)
  13. Liu H, Li Y, Wu H, Yang W, He D, Chin. J. Catal., 35, 1520 (2014)
  14. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 120(24), 6024 (1998)
  15. Xu L, Mi W, Su Q, J. Nat. Gas Chem., 20, 287 (2011)
  16. Dai XP, Li RJ, Yu CC, Hao ZP, J. Phys. Chem. B, 110(45), 22525 (2006)
  17. Zhang WD, Liu BS, Zhan YP, Tian YL, Ind. Eng. Chem. Res., 48(16), 7498 (2009)
  18. Wang N, Chu W, Zhang T, Zhao XS, J. Hydrol. Eng., 37, 19 (2012)
  19. Davidson A, Tempere JF, Che M, Roulet H, Dufour G, J. Phys. Chem., 100(12), 4919 (1996)
  20. Matte LP, Kilian AS, uza L, Alves MCM, Morais J, Baptista DL, Dupont J, Bernardi F, J. Phys. Chem., 119, 26459 (2015)
  21. Pal P, Singha RK, Saha A, Bal R, Panda AB, J. Phys. Chem., 119, 13610 (2015)
  22. Zhou GL, Liu HR, Cui KK, Jia AP, Hu GS, Jiao ZJ, Liu YQ, Zhang XM, Appl. Surf. Sci., 383, 248 (2016)
  23. Guo Y, Zou J, Shi X, Rukundo P, Wang ZJ, ACS Sustain. Chem. Eng., 5, 2330 (2017)
  24. Pati RK, Lee IC, Hou S, Akhueemonkhan O Gaskell KJ, Wang Q, Frenkel AI, Chu D, Salamanca-Riba LG, Ehrman SH, ACS Appl. Mater. Interfaces, 1, 2624 (2009)