화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.57, 387-395, January, 2018
Synthesis and characterization of biocompatible zinc oxide nanorod doped-titanium dioxide nanosheet
E-mail:,
The titanium dioxide (TiO2) and zinc oxide (ZnO) nanomaterials are widely used for several biomedical applications because of their semiconductor property. The present study demonstrates a strategy for synthesis of zinc oxide nanorod (ZnONR) doped titanium dioxide nanosheets (ZnONR@TiONS) via hydrothermal method. A series of characterization techniques indicated that TiONS exhibited band gap energy of 3.09 eV, while the ZnONR@TiONS showed 2.83 eV. XPS analysis confirmed the 4+ oxidation state of TiONS and 2+ oxidation state of ZnONR. In vitro cytotoxicity test indicated that the ZnONR@TiONS showed 99% of cell viability without any toxicity under 50 μg/mL of concentrations.
  1. Fang RH, Jiang Y, Fang JC, Zhang L, Biomaterials, 128, 69 (2017)
  2. Gajendiran M, Balashanmugam P, Kalaichelvan PT, Balasubramanian S, Mater. Res. Exp., 3 (2016)
  3. Gajendiran M, Yousuf SMJ, Elangovan V, Balasubramanian S, J. Mater. Chem., 2, 418 (2014)
  4. Kasinathan K, Kennedy J, Elayaperumal M, Henini M, Maaza M, Sci. Rep., 6, 38064 (2016)
  5. Kaviyarasu K, Premanand D, Kennedy J, Manikandan E, Int. J. Nanosci., 12, 135003 (2013)
  6. Fang F, Kennedy J, Manikandan E, Futter J, Markwitz A, Chem. Phys. Lett., 521, 86 (2012)
  7. Nandasiri MI, Shutthanandan V, Manandhar S, Schwarz AM, Oxenford L, Kennedy JV, Thevuthasan S, Henderson MA, J. Phys. Chem. Lett., 6, 4627 (2015)
  8. Franklyn PJ, Levendis DC, Coville NJ, Maaza M, S. Afr. J. Chem., 60, 71 (2007)
  9. Kaviyarasu K, Mariappan A, Neyvasagam K, Ayeshamariam A, Pandi P, Palanichamy RR, Gopinathan C, Mola GT, Maaza M, Surf. Interfaces, 6, 247 (2017)
  10. Kaviyarasu K, Kanimozhi K, Matinise N, Magdalane CM, Mola GT, Kennedy J, Maaza M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 76, 1012 (2017)
  11. Ezhilarasi AA, Vijaya JJJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ, J. Photochem. Photobiol. B-Biol., 164, 352 (2016)
  12. Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B, J. Photochem. Photobiol. B-Biol., 163, 77 (2016)
  13. Ngom BD, Mpahane T, Manikandan E, Maaza M, J. Alloy. Compd., 656, 758 (2016)
  14. Kaviyarasu K, Fuku X, Mola GT, Manikandan E, Kennedy J, Maaza M, Mater. Lett., 183, 351 (2016)
  15. Manikandan E, Murugan V, Kavitha G, Babu P, Maaza M, Mater. Lett., 131, 225 (2014)
  16. Liou JW, Chang HH, Arch. Immunol. Ther. Exp., 60, 267 (2012)
  17. Abrahamse H, Hamblin MR, Biochem. J., 473, 347 (2016)
  18. Raut AV, Yadav HM, Gnanamani A, Pushpavanam S, Pawar SH, Colloids Surf. B: Biointerfaces, 148, 566 (2016)
  19. Prakash J, Kumar P, Harris PA, Swart C, Neethling JH, Van Vuuren AJ, Swart HC, Nanotechnology, 27 (2016)
  20. Khan ST, Ahmad J, Ahamed M, Musarrat J, Al-Khedhairy AA, J. Biol. Inorg. Chem., 21, 295 (2016)
  21. Andre RS, Zamperini CA, Mima EG, Longo VM, Albuquerque AR, Sambrano JR, Machado AL, Vergani CE, Hernandes AC, Varela JA, Longo E, Chem. Phys., 459, 87 (2015)
  22. Nica IC, Stan MS, Popa M, Chifiriuc MC, Lazar V, Pircalabioru GG, Dumitrescu I, Ignat M, Feder M, Tanase LC, Mercioniu I, Diamandescu L, Dinischiotu A, Int. J. Mol. Sci., 18, 249 (2017)
  23. Zhao Y, Li CZ, Liu XH, Go F, Du HL, Shi LY, Appl. Catal. B: Environ., 79(3), 208 (2008)
  24. Ishigaki T, Plasma Chem. Plasma Process., 37(3), 783 (2017)
  25. Momeni MM, Ghayeb Y, Gheibee S, Ceram. Int., 43, 564 (2017)
  26. Singh A, Vihinen J, Frankberg E, Hyvarinen L, Honkanen M, Levanen E, Nanoscale Res. Lett., 11 (2016)
  27. Ide Y, Inami N, Hattori H, Saito K, Sohmiya M, Tsunoji N, Komaguchi K, Sano T, Bando Y, Golberg D, Sugahara Y, Angew. Chem.-Int. Edit., 55, 3600 (2016)
  28. Santos DMD, Navas J, Sanchez-Coronilla A, Alcantara R, Fernandez-Lorenzo C, Martin-Calleja J, Mater. Res. Bull., 70, 704 (2015)
  29. Mathumba P, Kuvarega AT, Dlamini LN, Malinga SP, Mater. Lett., 195, 172 (2017)
  30. Chatterjee A, Nishanthini D, Sandhiya N, Abraham J, Asian J. Pharm. Clin. Res., 9, 85 (2016)
  31. Zhang XJ, Zuo GQ, Lu X, Tang CQ, Cao S, Yu M, J. Colloid Interface Sci., 490, 774 (2017)
  32. Pan X, Chen X, Yi Z, ACS Appl. Mater. Interfaces, 8, 10104 (2016)
  33. Zhang QJ, Sun CH, Yan J, Hu XJ, Zhou SY, Chen P, Yingxiang Kexue yu Guanghuaxue/Imaging Sci. Photochem., 28, 305 (2010).
  34. Xin YJ, Lu Y, Han CC, Ge L, Qiu P, Li YJ, Fang SM, Mater. Res. Bull., 87, 123 (2017)
  35. Li C, Zhang S, Zhou Y, Li J, J. Mater. Sci. Mater. Electron., 1 (2017).
  36. Saleh SM, Soliman AM, Sharaf MA, Kale V, Gadgil B, J. Environ. Chem. Eng., 5 (2017)
  37. Miles DO, Lee CS, Cameron PJ, Mattia D, Kim JH, J. Power Sources, 325, 365 (2016)
  38. Wang R, Tan H, Zhao Z, Zhang G, Song L, Dong W, Sun Z, J. Mater. Chem., 2, 7313 (2014)
  39. Venkatasubbu GD, Baskar R, Anusuya T, Seshan CA, Chelliah R, Colloids Surf. B: Biointerfaces, 148, 600 (2016)
  40. Stoyanova A, Hitkova H, Bachvarova-Nedelcheva A, Iordanova R, Ivanova N, Sredkova M, J. Chem. Technol. Metall., 48, 154 (2013)
  41. Liu W, Su P, Gonzales A, Chen S, Wang N, Wang J, Li H, Zhang Z, Webster TJ, Int. J. Nanomed., 10, 1997 (2015)
  42. Sun Y, Cheng K, Weng W, Lin J, Wang H, Xiyou Jinshu Cailiao Yu Gongcheng/ Rare Metal Mater. Eng., 43, 369 (2014).
  43. Zhang WF, He YL, Zhang MS, Yin Z, Chen Q, J. Phys. D-Appl. Phys., 33, 912 (2000)
  44. McGuire K, Pan ZW, Wang ZL, Milkie D, Menendez J, Rao AM, J. Nanosci. Nanotechnol., 2, 499 (2002)
  45. Kim CS, Jeong HD, Bull. Korean Chem. Soc., 28, 2333 (2007)
  46. Lee JS, You KH, Park CB, Adv. Mater., 24(8), 1084 (2012)
  47. Ohno T, Tagawa S, Itoh H, Suzuki H, Matsuda T, Mater. Chem. Phys., 113(1), 119 (2009)
  48. Li W, Liang R, Hu A, Huang Z, Zhou YN, RSC Adv., 4, 36959 (2014)
  49. Talam S, Karumuri SR, Gunnam N, ISRN Nanotechnol., 2012, 6 (2012)
  50. Yang HY, Yu SF, Lau SP, Zhang X, Sun DD, Jun G, Small, 5, 2260 (2009)
  51. Liu PS, Cai WP, Wan LX, Shi MD, Luo XD, Jing WP, Trans. Nonferrous Met. Soc. China, 19, s743 (2009)
  52. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corp., Eden Prairie, p.38 1979.
  53. Ashkarran AA, Theor. Appl. Phys., 4, 8 (2011)
  54. Son I, No YS, Kim SY, Oh DH, Kim WT, Kim TW, J. Korean Phys. Soc., 55, 4 (2009)
  55. Shen L, Bao N, Yanagisawa K, Domen K, Gupta A, Grimes CA, Nanotechnology, 17, 5117 (2006)
  56. Tan AW, Tay L, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B, Nanomed., 9, 5389 (2014)
  57. Xu Y, Hadjiargyrou M, Rafailovich M, Mironava T, J. Nanobiotechnol., 15, 50 (2017)
  58. Rakhshaei R, Namazi H, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 73, 456 (2017)
  59. Sun Z, Xia R, Sun L, Hu X, Min X, Xu J, Chinese J. Stomatology, 50, 478 (2015)
  60. Kaviyarasu K, Geetha N, Kanimozhi K, Magdalane CM, Sivaranjani S, Ayeshamariam A, Kennedy J, Maaza M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 74, 325 (2017)
  61. Puzyn T, Rasulev B, Gajewicz A, Hu XK, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J, Nat. Nanotechnol., 6(3), 175 (2011)
  62. Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A, ACS Nano, 4, 5703 (2010)
  63. Pan Y, Li T, Cheng J, Telesca D, Zink JI, Jiang J, RSC Adv., 6, 25766 (2016)