화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.12, 3102-3110, December, 2017
Multilateral approaches for investigation of particle stickiness of coal ash at low temperature fouling conditions
E-mail:,
Particle stickiness is a key parameter for increasing ash deposition in gasification process. We conducted multilateral investigations to evaluate particle stickiness of coal ash at low temperature fouling conditions through Watt and Fereday’s viscosity model, dilatometry (DIL) and laser flash apparatus (LFA) technique. Seventeen coals were employed for ash deposition experiments under gasification condition through drop tube furnace (DTF). The low viscosity not only led to increasing ash deposition behavior, but also increasing the particle size of deposited ash. From DIL analysis, the ash sintering behavior increased with increasing temperature due to increase of particle stickiness. The high amount of Fe2O3, CaO and MgO components resulted in low sintering temperature and high reduction of physical length. Through LFA analysis, the thermal conductivity increased with increasing temperature, because of increasing particle stickiness. In addition, its value was correlated with the propensity of common fouling indices.
  1. Li Feng-Hai, Ma Xiu-Wei, Guo Qian-Qian, Fan Hong-Li, Xu Mei-Ling, Liu Qing-Hua, Fang Yi-Tian, Fuel Process. Technol., 152, 124 (2016)
  2. Wu Xiaojiang, Zhang Xiang, Dai Baiqian, Xu Xueyuan, Zhang Jianwen, Zhang Lian, Fuel Process. Technol., 152, 176 (2016)
  3. Dai BQ, Wu XJ, De Girolamo A, Zhang L, Fuel, 139, 720 (2015)
  4. Walsh PW, Energy Fuels, 6, 709 (1992)
  5. Xu LH, Namkung H, Kwonc HB, Kim HT, J. Ind. Eng. Chem., 15(1), 98 (2009)
  6. Singer JG, Combustion fossil power systems, in: Combustion Engineering inc, 3rd Ed., Rand McNally, New York (1981).
  7. Su S, Pohl JH, Holcombe D, Fuel, 82(13), 1653 (2003)
  8. Vargas S, Frandsen FJ, Dam-Johansen K, Prog. Energy Combust. Sci., 27(3), 237 (2001)
  9. Lin SJ, Ding L, Zhou ZJ, Yu GS, Fuel, 186, 656 (2016)
  10. Ni JJ, Zhou ZJ, Yu GS, Liang QF, Wang FC, Ind. Eng. Chem. Res., 49(23), 12302 (2010)
  11. Namkung H, Hu XF, Kim HT, Wang FC, Yu GS, Fuel Process. Technol., 149, 195 (2016)
  12. Grillot JM, Icart G, Exp. Therm. Fluid Sci., 14, 442 (1997)
  13. Muller-Steinhagen H, Reif F, Epstein N, Watkinson AP, Can. J. Chem. Eng., 66, 42 (1988)
  14. Barroso J, Ballester J, Ferrer LM, Jimenez S, Fuel Process. Technol., 87(8), 737 (2006)
  15. Ma ZH, Iman F, Lu PS, Sears R, Kong LB, Rokanuzzaman AS, McCollor DP, Benson SA, Fuel Process. Technol., 88(11-12), 1035 (2007)
  16. Strandstrom K, Mueller C, Hupa M, Fuel Process. Technol., 88(11-12), 1053 (2007)
  17. Li S, Wu Y, Whitty KJ, Energy Fuels, 24, 1868 (2010)
  18. Li SH, Whitty KJ, Energy Fuels, 23, 1998 (2009)
  19. Namkung H, Xu LH, Kim CH, Yuan XZ, Kang TJ, Kim HT, Fuel Process. Technol., 141, 82 (2016)
  20. Abd-Elhady MS, Clevers SH, Adriaans TNG, Rindt CCM, Wijers JG, van Steenhoven AA, Int. J. Heat Mass Transf., 50(1-2), 196 (2007)
  21. Pan YD, Si FQ, Xu ZG, Romero CE, Powder Technol., 210(2), 150 (2011)
  22. Raask E, J. Thermal Anal., 16, 91 (1979)
  23. Raask E, Coal ash sintering model and the rate measurements, Central Electricity Research Laboratories, Surrey, UK, 145 (1982).
  24. Hu H, Zhou K, Meng K, Song L, Lin Q, Energies, 10, 242 (2017)
  25. Pang CH, Hewakandamby B, Wu T, Lester E, Fuel, 103, 454 (2013)
  26. Wall TF, Bhattacharya SP, Zhang DK, Gupta RP, He X, Prog. Energy Combust. Sci., 19, 487 (1993)
  27. Robinson AL, Buckley SG, Baxter LL, Energy Fuels, 15(1), 66 (2001)
  28. Al-Otoom AY, Bryant GW, Elliott LK, Skrifvars BJ, Hupa M, Wall TF, Energy Fuels, 14(1), 227 (2000)
  29. Bang JW, Lee YJ, Shin DG, Kim Y, Kim SR, Baek CS, Kwon WT, J. Korean Ceram. Soc., 53, 659 (2016)
  30. Michot A, Smith DS, Degot S, Gault C, J. Eur. Ceram. Soc., 28, 2639 (2008)
  31. Bourret J, Michot A, Tessier-Doyen N, Nait-Ali B, Pennec F, Alzina A, Vicente J, Peyratout CS, Smith DS, J. Am. Ceram. Soc., 97(3), 938 (2014)
  32. Watt JD, Fereday F, J. Inst. Fuel, 42, 99 (1969)
  33. Namkung H, Xu LH, Kang TJ, Kim DS, Kwon HB, Kim HT, Appl. Energy, 102, 1246 (2013)
  34. Namkung H, Xu LH, Shin WC, Kang TJ, Kim HT, Fuel, 117, 1274 (2014)
  35. Namkung H, Kang TJ, Xu LH, Jeon YS, Kim HT, Korean J. Chem. Eng., 29(4), 464 (2012)
  36. Senior CL, Srinivasachar S, Energy Fuels, 9(2), 277 (1995)
  37. Raask E, Mineral impurities in coal combustion, Behavior, Problem and Remedial measure, Hemisphere Publishing, Washington DC (1985).
  38. Al-Otoom AY, Elliott LK, Wall TF, Moghtaderi B, Energy Fuels, 14(5), 994 (2000)
  39. http://dspace.mit.edu/handle/1721.1/27224 (access: Oct. 2, 2016).
  40. Bryers RW, in: Gupta RP, Wall TF, Baxter LL(Eds.), pp. 105-131, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).
  41. German RM, Powder metallurgy science, 2nd Ed., Princeton, New Jersey (1994).
  42. Gupta RP, Wall TF, Baxter LL, in: Gupta RP, Wall TF, Baxter LL(Eds.), pp. 65-84, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).
  43. WALL TF, BHATTACHARYA SP, BAXTER LL, RICHARDS G, HARB JN, Fuel Process. Technol., 44(1-3), 143 (1995)
  44. Anderson DW, Viskanta R, Incropera FP, J. Eng. Gas Turbines Power, 109, 215 (1987)
  45. Mills KC, Rhine JM, Fuel, 68, 904 (1989)
  46. Rezaei HR, Gupta RP, Bryant GW, Hart JT, Liu GS, Bailey CW, Wall TF, Miyamae S, Makino K, Endo Y, Fuel, 79, 1697 (2000)
  47. http://www.coaltech.com.au/LinkedDocuments/Slagging%20&%20Fouling.pdf (access : Oct. 10, 2016).