화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.29, No.4, 303-316, November, 2017
Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration
E-mail:
The present study investigates the pulsatile flow of Casson nanofluid through an inclined and stenosed artery with tapering in the presence of magnetic field and periodic body acceleration. The iron oxide nanoparticles are allowed to flow along with it. The governing equations for the flow of Casson fluid when the artery is tapered slightly having mild stenosis are highly non-linear and the momentum equations for temperature and concentration are coupled and are solved using finite difference numerical schemes in order to find the solutions for velocity, temperature, concentration, wall shear stress, and resistance to blood flow. The aim of the present study is to analyze the effects of flow parameters on the flow of nanofluid through an inclined arterial stenosis with tapering. These effects are represented graphically and concluded that the wall shear stress profiles enhance with increase in yield stress, magnetic field, thermophoresis parameter and decreases with Brownian motion parameter, local temperature Grashof number, local nanoparticle Grashof number. The significance of the model is the existence of yield stress and it is examined that when the rheology of blood changes from Newtonian to Casson fluid, the percentage of decrease in the flow resistance is higher with respect to the increase in the parameters local temperature Grashof number, local nanoparticle Grashof number, Brownian motion parameter, and Prandtl number. It is pertinent to observe that increase in the Brownian motion parameter leads to increment in concentration and temperature profiles. It is observed that the concentration of nanoparticles decreases with increase in the value of thermophoresis parameter.
  1. Akbar NS, J. Magn. Magn. Mater., 378, 463 (2015)
  2. Akbar NS, Butt AW, J. Magn. Magn. Mater., 381, 285 (2015)
  3. Bali R, Awasthi U, Appl. Math., 3, 436 (2012)
  4. Beg OA, Beg TA, Bhargava R, Rawat S, Tripathi D, J. Mech. Med. Biol., 12, 125008 (2012)
  5. Blair GWS, Nature, 183, 613 (1959)
  6. Blair GWS, Spanner DC, An Introduction to Biorheology, Elsevier Scientific, Amsterdam 1974.
  7. Caro CG, Clin. Hemorheol. Microcirc., 2, 131 (1982)
  8. Chakravarty S, Mandal PK, Int. J. Non-Linear Mech., 35, 779 (2000)
  9. Charm S, Kurland G, Nature, 206, 617 (1965)
  10. Chaturani P, Ponnalagarsamy R, Proceedings of the 13th National Conference on Fluid Mechanics and Fluid Power, Tiruchirapalli, India, 463-468 1984.
  11. Chaturani P, Ponalagusamy R, Biorheology, 23, 499 (1986)
  12. Chaturani P, Palanisamy V, Biorheology, 27, 619 (1990)
  13. Choi SUS, Eastman JA, ASME International Mechanical Engineering Congress and Exposition, San Francisco, California, 44144 (1995).
  14. Dash RK, Mehta KN, Jayaraman G, Int. J. Eng. Sci., 34, 1145 (1996)
  15. El-Shahed M, Appl. Math. Comput., 138, 479 (2003)
  16. Ellahi R, Appl. Math. Model., 37, 1451 (2013)
  17. Ellahi R, Hassan M, Zeeshan A, Therm. Sci., 20, 2015 (2016)
  18. Ellahi R, Rahman SU, Nadeem S, Akbar NS, Appl. Nanosci., 4, 919 (2014)
  19. Elshehawey EF, Elbarbary EME, Afifi NAS, El-Shahed M, Int. J. Theor. Phys., 39, 183 (2000)
  20. Hariri S, Mokhtari M, Gerdroodbary MB, Fallah K, Eur. Phys. J. Plus, 132, 65 (2017)
  21. Hayat T, Sajjad R, Alsaedi A, Muhammad T, Ellahi R, Results Phys., 7, 553 (2017)
  22. Ibrahim SM, Lorenzini G, Kumar PV, Raju CSK, Int. J. Heat Mass Transf., 111, 346 (2017)
  23. Jeffords JV, Knisley MH, Angiology, 7, 105 (1956)
  24. Ku DN, Annu. Rev. Fluid Mech., 29, 399 (1997)
  25. Liu GT, Wang XJ, Ai BQ, Liu LG, Chin. J. Phys., 42, 401 (2004)
  26. Mamourian M, Shirvan KM, Mirzakhanlari S, Energy, 109, 49 (2016)
  27. Mandal PK, Int. J. Non-Linear Mech., 40, 151 (2005)
  28. Mekheimer KS, EI Kot MA, Acta Mech. Sin, 24, 637 (2008)
  29. Merrill EW, Benis AM, Gilliland ER, Sherwood TK, Salzman EW, J. Appl. Phys., 20, 954 (1965)
  30. Nadeem S, Ijaz S, Phys. Lett. A, 379, 542 (2015)
  31. Nadeem S, Ijaz S, Adil Sadiq M, Curr. Nanosci, 10, 753 (2014)
  32. Nguyen QD, Boger DV, Annu. Rev. Fluid Mech., 24, 47 (1992)
  33. Ponalagusamy R, Blood Flow through Stenosed Tube, Ph.D Thesis, Indian Institute of Technology Bombay 1986.
  34. Ponnalagarsamy R, Kawahara M, Int. J. Numer. Methods Fluids, 9, 1487 (1989)
  35. Ponalagusamy R, Tamil Selvi R, Meccanica, 48, 2427 (2013)
  36. Rahman SU, Ellahi R, Nadeem S, Zaigham Zia QM, J. Mol. Liq., 218, 484 (2016)
  37. Rashidi S, Esfahani JA, Ellahi R, Appl. Sci., 7, 431 (2017)
  38. Rodkiewicz CM, Sinha P, Kennedy JS, J. Biomech. Eng. -Trans. ASME, 112, 198 (1990)
  39. Sharma MK, Bansal K, Bansal S, Korea-Aust. Rheol. J., 24(3), 181 (2012)
  40. Shaw S, Murthy PVSN, Pradhan SC, Open Transport Phenom. J., 2, 55 (2010)
  41. Shaw S, Gorla RSR, Murthy PVSN, Ng CO, Int. J. Fluid Mech. Res., 36, 43 (2009)
  42. Shehzad N, Zeeshan A, Ellahi R, Vafai K, J. Mol. Liq., 222, 446 (2016)
  43. Sheikholeslami M, Zaigham Zia QM, Ellahi R, Appl. Sci., 6, 324 (2016)
  44. Shukla JB, Parihar RS, Rao BRP, Bull. Math. Biol., 42, 283 (1980)
  45. Siddiqui SU, Verma NK, Mishra S, Gupta RS, Appl. Math. Comput., 210, 1 (2009)
  46. Young DF, J. Eng. Ind.-Trans. ASME, 90, 248 (1968)
  47. Young DF, J. Biomech. Eng. -Trans. ASME, 101, 157 (1979)
  48. Young DF, Tsai FY, J. Biomech., 6, 395 (1973)
  49. Zaman A, Ali N, Sajid M, Math. Comput. Simul., 134, 1 (2017)