화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.11, 3009-3016, November, 2017
A correlation of results measured by cyclic voltammogram and impedance spectroscopy in glucose oxidase based biocatalysts
E-mail:,
A new biocatalyst consisting of glucose oxidase (GOx) and polyethylenimine (PEI) immobilized on carbon nanotube (CNT) (CNT/PEI/GOx) was developed, while cyclic voltammogram (CV) behaviors of several related catalysts including the CNT/PEI/GOx were analyzed in terms of charge transfer resistances (Rcts) obtained by measuring Nyquist plots using electrochemical impedance spectroscopy (EIS). A qualitative correlation between the flavin adenine dinucleotide (FAD) redox reactivity measured by the CV and Rct was established. As factors affecting both the FAD reactivity and Rct, concentrations of GOx, glucose, and phosphate buffer solution, electrolyte pH and ambient condition were considered and evaluations of the catalysts using the CV curves and Nyquist plots confirmed that a pattern in the FAD reactivity was closely linked to that in the Rct, implying that FAD reactivities of the catalysts are predicted by the measurements of their Rcts. Even regarding performance of the enzymatic biofeul cells(EBCs) using the reacted catalysts, a pattern of the Rcts is compatible with that in the maximum power densities (MPDs) of the EBCs.
  1. Zebda A, Cosnier S, Alcaraz JP, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P, Sci. Rep., 3, 1516 (2013)
  2. Zebda A, Gondran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S, Nat. Commun., 2, 370 (2011)
  3. Zebda A, Renaud L, Cretin M, Innocent C, Pichot F, Ferrigno R, Tingry S, J. Power Sources, 193(2), 602 (2009)
  4. Choi HS, Kim DS, Thapa LP, Lee SJ, Kim SB, Cho J, Park C, Kim SW, Korean J. Chem. Eng., 33(12), 3434 (2016)
  5. Bohara RA, Thorat ND, Pawar SH, Korean J. Chem. Eng., 33(1), 216 (2016)
  6. Cosnier S, Le Goff A, Holzinger M, Electrochem. Commun., 38, 19 (2014)
  7. Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867 (2004)
  8. Kwon KY, Youn J, Kim JH, Park Y, Jeon C, Kim BC, Kwon Y, Zhao X, Wang P, Sang BI, Lee J, Park HG, Chang HN, Hyeon T, Ha S, Jung HT, Kim J, Biosens. Bioelectron., 26, 655 (2010)
  9. Yu EH, Krewer U, Scott K, Energy, 3, 1499 (2010)
  10. Chung Y, Hyun K, Kwon Y, Nanoscale., 8, 1161 (2016)
  11. Han S, Chae GS, Lee JS, Korean J. Chem. Eng., 33(6), 1799 (2016)
  12. Kavitha AL, Yazhini KB, Korean J. Chem. Eng., 33(6), 1948 (2016)
  13. Shimizu K, Ishihara M, Biotechnol. Bioeng., 29, 236 (1987)
  14. Wei Y, Xu J, Feng Q, Lin M, Dong H, Zhang W, Wang CJ, Nanosci. Nanotechnol., 1, 83 (2001)
  15. Szymanska K, Bryjak J, Jarzebski AB, Top. Catal., 52, 1030 (2009)
  16. Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, van Rantwijk F, van der Wielen LAM, Sheldon RA, Biotechnol. Bioeng., 87(6), 754 (2004)
  17. Tran DN, Balkus KJ, ACS Catal., 1, 956 (2011)
  18. WILLNER I, RIKLIN A, SHOHAM B, RIVENZON D, KATZ E, Adv. Mater., 5(12), 912 (1993)
  19. Willner I, Helegshabtai V, Blonder R, Katz E, Tao GL, J. Am. Chem. Soc., 118(42), 10321 (1996)
  20. Willner I, Katz E, Willner B, Electroanalysis, 9, 965 (1997)
  21. Christwardana M, Chung Y, Kwon Y, Nanoscale, 9, 1993 (2017)
  22. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197 (2015)
  23. Inamuddin, Beenish, Naushad M, Korean J. Chem. Eng., 33(1), 120 (2016)
  24. Wooten M, Karra S, Zhang M, Gorski W, Anal. Chem., 86, 752 (2014)
  25. Shervedani RK, Mehrjardi AH, Zamiri N, Bioelectrochemistry, 69, 201 (2006)
  26. Mulchandani P, Mulchandani A, Kaneva I, Chen W, Biosens. Bioelectron., 14, 77 (1999)
  27. Yuan R, Tang DP, Chai YQ, Zhong X, Liu Y, Dai JY, Langmuir, 20(17), 7240 (2004)
  28. Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8, 9201 (2016)
  29. Christwardana M, Kwon Y, J. Power Sources, 299, 604 (2015)
  30. Ahn Yeonjoo, Yoo Kye Sang, Kim Lae-Hyun, Kwon Yongchai, Int. J. Hydrog. Energy, 41(39), 17548 (2016)
  31. Duan S, Yue R, Huang Y, Talanta, 160, 607 (2016)
  32. Fischer JE, Dai H, Thess A, Lee R, Hanjani NM, Dehaas DL, Smalley RE, Phys. Rev., 55, R4921 (1997)
  33. Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G, Powder Technol., 221, 351 (2012)
  34. Zou G, Jain M, Yang H, Zhang Y, Williams D, Jia Q, Nanoscale, 2, 418 (2010)
  35. Deng S, Jian G, Lei J, Hu Z, Ju H, Biosens. Bioelectron., 25, 373 (2009)
  36. Chen WC, Wen TC, Hu CC, Gopalan A, Electrochim. Acta, 47(8), 1305 (2002)
  37. Johnson AM, Sadoway DR, Cima MJ, Langer R, J. Electrochem. Soc., 152(1), H6 (2005)
  38. Prodan C, Bot C, J. Phys. D-Appl. Phys., 42, 175505 (2009)
  39. Ji J, Christwardana M, Chung Y, Kwon Y, Trans. Korean Hydrogen New Energy Soc., 27, 526 (2016)
  40. Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy, 40(5), 2199 (2015)
  41. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 3012 (2016)
  42. Ivnitski D, Branch B, Atanassov P, Apblett C, Electrochem. Commun., 8, 1204 (2006)
  43. Ivnitski D, Artyushkova K, Rincon RA, Atanassov P. Luckarift HR, Johnson GR, Small., 4, 357 (2008)
  44. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L, Biotechnol. Adv., 27, 489 (2009)
  45. Tlili C, Reybier K, Geloen A, Ponsonnet L, Martelet C, Ouada HB, Lagarde M, Jaffrezic-Renault N, Anal. Chem., 75, 3340 (2003)