화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.11, 2933-2943, November, 2017
Evaluating the ability of separation and adsorption of SO2 by nano-CuO-Fe2O3/TiO2 in high concentrations and moderate temperatures
E-mail:
Nano CuO-Fe2O3/TiO2 adsorbents were made with different compositions of metal oxides using precipitation- desorption method. The adsorbents were applied for adsorption of SO2 at high concentrations ranging from 10,000 to 30,000 ppm and temperatures between 523 and 627 K. Adsorption experiments were applied for adsorbents in a laboratory fixed bed adsorption column. The adsorption capacity was measured by calculating the area under the adsorption curve using the integral method. The results showed that temperature is the most affecting factor on the adsorption capacity. The highest adsorption capacity was obtained by using 17, 8 and 75 wt% of CuO, Fe2O3 and nano TiO2, respectively. Characteristics of the best sorbent were determined by using Fe-SEM, XRD and nitrogen adsorption- desorption analyses.
  1. Bahrami R, Ebrahim HA, Halladj R, Process Saf. Environ. Protect., 92(6), 938 (2014)
  2. Mathieu Y, Soulard M, Patarin J, Moliere M, Fuel Process. Technol., 99, 35 (2012)
  3. Atanes E, Nieto-Marquez A, Cambra A, Ruiz-Perez MC, Fernandez-Martinez F, Chem. Eng. J., 211, 60 (2012)
  4. Lee SJ, Lee SC, Jung SY, Ryu CK, Kim JC, Korean J. Chem. Eng., 26(5), 1286 (2009)
  5. Zhao L, Li X, Hao C, Raston CL, Appl. Catal. B: Environ., 117-118, 339 (2012)
  6. Abdullah WNW, Bakar WAWA, Ali R, Korean J. Chem. Eng., 32(10), 1999 (2015)
  7. Lagas JA, Borsboom J, Berben PH, Oil Gas J., 83:41, 66 (1988)
  8. Elsner MP, Menge M, Muller C, Agar DW, Catal. Today, 79-80, 487 (2003)
  9. Jones D, Bhattacharyya D, Turton R, Zitney SE, Ind. Eng. Chem. Res., 51, 2362 (2011)
  10. Buelna G, Lin YS, Sep. Purif. Technol., 39(3), 167 (2004)
  11. Mathieu Y, Tzanis L, Soulard M, Patarin J, Vierling M, Moliere M, Fuel Process. Technol., 114, 81 (2013)
  12. Ho HP, Kasinathan P, Kim J, Lee D, Woo HC, Korean J. Chem. Eng., 33(6), 1908 (2016)
  13. Alvarezmerino MA, Carrascomarin F, Morenocastilla C, Appl. Catal. B: Environ., 13(3-4), 229 (1997)
  14. Guo J, Lua AC, J. Chem. Technol. Biotechnol., 75(11), 971 (2000)
  15. Ma JR, Liu ZY, Liu SJ, Zhu ZP, Appl. Catal. B: Environ., 45(4), 301 (2003)
  16. Tseng HH, Wey MY, Liang YS, Chen KH, Carbon, 41, 1079 (2003)
  17. Kikuyama S, Miura A, Kikuchi R, Takeguchi T, Eguchi K, Appl. Catal. A: Gen., 259(2), 191 (2004)
  18. Lee SJ, Jung SY, Lee SC, Jun HK, Ryu CK, Kim JC, Ind. Eng. Chem. Res., 48(5), 2691 (2009)
  19. Jae LS, Jun HK, Jung SY, Lee TJ, Ryu CK, Kim JC, Ind. Eng. Chem. Res., 44(26), 9973 (2005)
  20. Lowell PS, Schwitzgebel K, Parsons TB, Sladek KJ, Ind. Eng. Chem. Process Des. Dev., 10, 384 (1971)
  21. Schreier E, Eckelt R, Richter M, Fricke R, Appl. Catal. B: Environ., 65(3-4), 249 (2006)
  22. Jeong SM, Kim SD, Ind. Eng. Chem. Res., 36(12), 5425 (1997)
  23. Macken C, Hodnett BK, Paparatto G, Ind. Eng. Chem. Res., 39(10), 3868 (2000)
  24. Jia ZH, Liu ZY, Zhao YH, Chem. Eng. Technol., 30(9), 1221 (2007)
  25. Xiang J, Zhao Q, Hu S, Sun L, Su S, Fu P, Zhang A, Qiu J, Chen H, Xu M, Asia Pac. J. Chem. Eng., 2, 182 (2007)
  26. Centi G, Passarini N, Perathoner S, Riva A, Ind. Eng. Chem. Res., 31, 1947 (1992)
  27. Gavaskar VS, Abbasian J, Ind. Eng. Chem. Res., 45(17), 5859 (2006)
  28. Zhao L, Li XY, Qu ZP, Zhao QD, Liu SM, Hu XJ, Sep. Purif. Technol., 80(2), 345 (2011)
  29. Lee YJ, Park NK, Han GB, Ryu SO, Lee TJ, Chang CH, Curr. Appl. Phys., 8(6), 746 (2008)
  30. Lee HS, Kang MP, Song YS, Lee TJ, Rhee YW, Korean J. Chem. Eng., 18(5), 635 (2001)
  31. Li K, Wang Y, Wang S, Zhu B, Zhang S, Huang W, Wu S, J. Nat. Gas Chem., 18, 449 (2009)
  32. Biabani A, Rezaei M, Fattah Z, J. Nat. Gas Chem., 21, 415 (2012)
  33. Dolan MD, Ilyushechkin AY, Mclennan KG, Sharma SD, Asia Pac. J. Chem. Eng., 7, 1 (2012)
  34. Luo Y, Li D, Dev. Chem. Eng. Mineral Process., 10(3/4), 443 (2002)