화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.53, 183-191, September, 2017
Effect of dopants on the structure of titanium oxide used as a photocatalyst for the removal of emergent contaminants
Photocatalysts composed of titanium dioxide modified with B, F, N and P have been synthesized, characterized and applied to the degradation of caffeine, diclofenac, ibuprofen and salicylic acid. The modified TiO2 samples were prepared by the sol.gel technique starting from titanium(IV) isopropoxide and using H3BO3, NH4F, N(C2H5OH)3 and H3PO4 as precursors of the modifiers, with the content varying between 0 and 5 wt%. Structural characterization was based on nitrogen physisorption at -196 °C, powder X-ray diffraction (PXRD), simultaneous thermogravimetric/differential thermal analysis (TG/ DTA) and X-ray photoelectron spectroscopy (XPS). The structural properties of the modified TiO2 solids were significantly different depending on the nature and amount of modifiers and the calcination temperature. TiO2 in the anatase phase was obtained in all cases and was stable upon calcination at 400 °C. The photocatalytic degradation of caffeine, diclofenac, ibuprofen and salicylic acid by modified TiO2 was investigated under ultraviolet irradiation at 25 °C. The photocatalytic degradation behavior followed the order: caffeine > diclofenac = ibuprofen > salicylic acid. B-doped TiO2 was the most efficient catalyst in the degradation of these selected emerging contaminants.
  1. Fox MA, Dulay MT, Chem. Rev., 93, 341 (1993)
  2. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
  3. Schneider J, Matsuoka M, Takeuchi M, Zhang JL, Horiuchi Y, Anpo M, Bahnemann DW, Chem. Rev., 114(19), 9919 (2014)
  4. Tanaka A, Hashimoto K, Kominami H, J. Am. Chem. Soc., 136(2), 586 (2014)
  5. Mori K, Yamashita H, Anpo M, RSC Adv., 2, 3165 (2012)
  6. Pan JH, Dou H, Xiong Z, Xu C, Ma J, Zhao XS, J. Mater. Chem., 20, 4512 (2010)
  7. Chong MN, Jin B, Chow CWK, Saint C, Water Res., 44, 2997 (2010)
  8. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD, Appl. Catal. B: Environ., 125, 331 (2012)
  9. Park H, Park Y, Kim W, Choi W, J. Photochem. Photobiol. C: Photochem. Rev., 15, 1 (2013)
  10. Rives V, in: I. Nagy, A. Balogh (Eds.), New Developments in Metal Oxides Research, NOVA Sci. Pubb., Inc., New York, 2013, pp. 1.
  11. Rives V, in: S.L. Suib (Ed.), New and Future Developments in Catalysis: Catalysis by Nanoparticles, Elsevier, Amsterdam, 2013, pp. 189.
  12. Gil A, Fernandez M, Mendizabal I, Korili SA, Soto-Armananzas J, Crespo-Durante A, Gomez-Polo C, Ceram. Int., 42, 9292 (2016)
  13. Yang HM, Park SJ, J. Ind. Eng. Chem., 41, 33 (2016)
  14. Suhadolnik L, Krivec M, Zagar K, Drazic G, Ceh M, J. Ind. Eng. Chem., 47, 384 (2017)
  15. Herrmann JM, New J. Chem., 36, 883 (2012)
  16. Serpone N, J. Phys. Chem. B, 110(48), 24287 (2006)
  17. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
  18. Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
  19. Devi LG, Kavitha R, Appl. Catal. B: Environ., 140, 559 (2013)
  20. Asahi R, Morikawa T, Irie H, Ohwaki T, Chem. Rev., 114(19), 9824 (2014)
  21. Jabbari V, Hamadanian M, Karimzadeh S, Villagran D, J. Ind. Eng. Chem., 35, 132 (2016)
  22. Jang I, Leong HJ, Noh H, Kang T, Kong S, Oh SG, J. Ind. Eng. Chem., 37, 380 (2016)
  23. Klaysri R, Tubchareon T, Praserthdam P, J. Ind. Eng. Chem., 45, 229 (2017)
  24. Richardson SD, Ternes TA, Anal. Chem., 83, 4614 (2011)
  25. Petrovic M, Gonzalez S, Barcelo D, Trends Anal. Chem., 22, 685 (2003)
  26. Brayfield A, Martindale: The Complete Drug Reference, The Pharmaceutical Press, 2016.
  27. Yu JC, Yu J, Ho W, Jiang Z, Zhang L, Chem. Mater., 14, 3808 (2002)
  28. Yu JC, Zhang L, Zheng Z, Zhao J, Chem. Mater., 15, 2280 (2003)
  29. Korosi L, Dekany I, Colloids Surf. A: Physicochem. Eng. Asp., 280, 146 (2006)
  30. Chen D, Yang D, Wang Q, Jiang ZY, Ind. Eng. Chem. Res., 45(12), 4110 (2006)
  31. Sewart SJ, Fernandez-Garcia M, Belver C, Mun BS, Requejo FG, J. Phys. Chem., 110, 16482 (2006)
  32. Zaleska A, Sobczak JW, Grabowska E, Hupka J, Appl. Catal. B: Environ., 78(1-2), 92 (2008)
  33. Gopal NO, Lo HH, Ke TF, Lee CH, Chou CC, Wu JD, Sheu SC, Ke SC, J. Phys. Chem., 116, 16191 (2012)
  34. Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG, J. Am. Chem. Soc., 126(15), 4782 (2004)
  35. Hattori A, Shimoda K, Tada H, Ito S, Langmuir, 15(16), 5422 (1999)
  36. Czoska AM, Livraghi S, Chiesa M, Giamello E, Granozzi SG, Finazzi E, Di Valentin C, Pacchioni G, J. Phys. Chem., 112, 8951 (2008)
  37. Samsudin EM, Abd Hamid SB, Juan JC, Basirun WJ, Centi G, Chem. Eng. J., 280, 330 (2015)
  38. Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y, J. Mater. Sci., 29(6), 1617 (1994)
  39. Thommes M, Kaneko K, Meimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
  40. Zhang ZZ, Wang XX, Long JL, Gu QA, Ding ZX, Fu XZ, J. Catal., 276(2), 201 (2010)
  41. Saha NC, Tompkins HC, J. Appl. Phys., 72, 3072 (1992)
  42. Chen XB, Burda C, J. Phys. Chem. B, 108(40), 15446 (2004)
  43. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M, Sci. Rep., 4, 4043 (2014)
  44. Batzill M, Energy Environ. Sci., 4, 3275 (2011)
  45. Diebold U, Surf. Sci. Rep., 48, 53 (2003)
  46. Czech B, Rubinowska K, Adsorption, 19, 619 (2013)
  47. Marques RRN, Sampaio MJ, Carrapico PM, Silva CG, Morales-Torres S, Drazic G, Faria JL, Silva AMT, Catal. Today, 209, 108 (2013)