화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.53, 177-182, September, 2017
Size-controlled synthesis, characterization, and cytotoxicity study of monodisperse poly(dimethylsiloxane) nanoparticles
E-mail:,
Polydimethylsiloxane (PDMS) nanoparticles (NPs) were synthesized using dimethylsiloxane and tetraethyl orthosilicate as precursors via a modified Stober process. A diluted ammonia solution was added to the reaction mixture. This induced base-catalyzed hydrolysis and condensation, forming dispersed nanocolloids. The as-synthesized organosilica NPs exhibited excellent colloidal stability without any noticeable precipitation in water. The particle size was readily tunable, in a diameter range of approximately 50-300 nm, by changing the amount of catalysts added to the reaction. Furthermore, we evaluated the cytotoxicity of PDMS NPs using a CCK-8 assay to demonstrate that PDMS NPs are promising for biomedical applications.
  1. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI, ACS Nano, 2, 889 (2008)
  2. Rieter WJ, Kim JS, Taylor KML, An H, Lin W, Tarrant T, Lin W, Angew. Chem.-Int. Edit., 46, 3680 (2007)
  3. Lee JE, Lee N, Kim T, Kim J, Hyeon T, Acc. Chem. Res., 44, 893 (2011)
  4. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY, Adv. Drug Deliv. Rev., 60, 1278 (2008)
  5. Wang Y, Caruso F, Chem. Mater., 17, 953 (2005)
  6. Tang L, Cheng JJ, Nano Today, 8(3), 290 (2013)
  7. Bagheri A, Arandiyan H, Boyer C, Lim M, Adv. Sci., 3, 150043 (2016)
  8. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP, J. Phys. Chem. B, 105(37), 8861 (2001)
  9. Lizmarzan LM, Giersig M, Mulvaney P, Langmuir, 12(18), 4329 (1996)
  10. Yoon TJ, Yu KN, Kim E, Kim J, Kim B, Yun SH, Sohn BH, Cho MH, Lee JK, Park S, Small, 2, 209 (2006)
  11. Chaudhuri RG, Paria S, Chem. Rev., 112(4), 2373 (2012)
  12. Oberdorster G, Stone V, Donaldson K, Nanotoxicology, 1, 2 (2009)
  13. Fubini B, Hubbard A, Free Radic. Biol. Med., 34, 1507 (2003)
  14. Yu T, Malugin A, Ghandehari H, ACS Nano, 5, 5717 (2011)
  15. Thomassen LCJ, Aerts A, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Napierska D, Hoet PH, Kirschhock CEA, Martens JA, Langmuir, 26(1), 328 (2010)
  16. Kim IY, Joachim E, Choi H, Kim K, Nanomed. Nanotechnol. Biol. Med., 11, 1407 (2015)
  17. Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch- Volders M, Martens JA, Hoet PH, Small, 5, 846 (2009)
  18. Cho Y, Lee JB, Hong J, Sci. Rep., 4 (2014)
  19. Kim YR, Hwang J, Koh HJ, Jang K, Lee JD, Choi J, Yang CS, Biomaterials, 89, 1 (2016)
  20. Chen Y, Shi JL, Adv. Mater., 28(17), 3235 (2016)
  21. Croissant JG, Cattoen X, Man MWC, Durand JO, Khashab NM, Nanoscale, 7, 20318 (2015)
  22. Chen Y, Meng QS, Wu MY, Wang SG, Xu PF, Chen HR, Li YP, Zhang LX, Wang LZ, Shi JL, J. Am. Chem. Soc., 136(46), 16326 (2014)
  23. Yang Y, Niu Y, Zhang J, Meka AK, Zhang H, Xu C, Lin CXC, Yu M, Yu C, Small, 11, 2743 (2015)
  24. Mata A, Fleischman AJ, Roy S, Biomed. Microdevices, 7, 281 (2005)
  25. Elbers NA, Jose J, Imhof A, van Blaaderen A, Chem. Mater., 27, 1709 (2015)
  26. Shields CW, Sun D, Johnson KA, Duval KA, Rodriguez AV, Gao L, Dayton PA, Lopez GP, Angew. Chem.-Int. Edit., 53, 8070 (2014)
  27. Brinker CJ, Scherer GW, Sol.Gel Science: The Physics and Chemistry of Sol. Gel Processing, Academic Press, San Diego, 1990.
  28. Dashnyam K, Perez R, Lee EJ, Yun YR, Jang JH, Wall IB, Kim HW, J. Biomed. Mater. Res., 102, 1859 (2014)
  29. Kunst SR, Beltrami LVR, Cardoso HRP, Santana JA, Sarmento VHV, Muller IL, Malfatti CDF, Mater. Res., 18, 151 (2015)
  30. Mourhly A, Khachani M, El Hamidi A, Kacimi M, Halim M, Arsalane S, Nanomater. Nanotechnol., 5 (2015)
  31. Zhang XX, Xia BB, Ye HP, Zhang YL, Xiao B, Yan LH, Lv HB, Jiang B, J. Mater. Chem., 22, 13132 (2012)
  32. Matsoukas T, Gulari E, J. Colloid Interface Sci., 124, 252 (1988)
  33. Chuah YJ, Koh YT, Lim K, Menon NV, Wu Y, Kang Y, Sci. Rep., 5, 18162 (2015)