화학공학소재연구정보센터
Journal of Power Sources, Vol.348, 219-228, 2017
Redox enhanced energy storage in an aqueous high-voltage electrochemical capacitor with a potassium bromide electrolyte
This paper reports a detailed electrochemical investigation of a symmetric carbon-carbon electrochemical device with a potassium bromide (KBr) electrolyte. Below 1.6 V, KBr gives electrochemical double layer behavior. At higher voltages the Br-/Br-3(-) redox reaction comes into effect and enhances the energy storage. The redox-enhanced device has a high energy density, excellent stability, as well as high coulombic and energy efficiencies even at 1.9 V. More importantly, the redox contribution can be "triggered" by pre-cycling at 1.9 V, and remains beneficial after switching to 1.6 V. The triggering operation leads to a 22% increase in stored energy with negligible sacrifice of power. The intriguing behavior is accompanied by a series of complex variations including the shifts of electrode potential limits and the shift of potential of zero voltage. The electro-oxidation of the positive electrode and kinetics of the Br-/Br-3(-) electrode reactions are proposed to be the main causes for the triggering phenomenon. These findings provide means to improve the design and operation of devices that contain bromine, or other redox species with a comparably high electrode potential. (C) 2017 Elsevier B.V. All rights reserved.