화학공학소재연구정보센터
Applied Surface Science, Vol.416, 118-123, 2017
Electrospun core-shell nanofibers derived Fe-S/N doped carbon material for oxygen reduction reaction
One-dimensional (1D) nanomaterials have gained attention in energy conversion, storage, and catalyst due to the unique physical and chemical properties. Electrospinning is a kind of simple, versatile, and cost-effective technology to fabricate 1D functional nanofibers. Herein, electrospun polyacrylonitrile (PAN), melamine, and ferric chloride hexahydrate (FeCl3 6H(2)O) composite nanofibers are used as template, and polythiophene (PT) are prepared by photopolymerization technology on the surface of electrospun nanofibers as shell part of fibers. Then, the core-shell nanofibers are pyrolyzed and converted into Fe-S/N-C nanofibers, which can be used as catalysts for ORR due to the metal and S-/N-codoped structure and unique 1D structure which provided facile pathways for efficient mass transport and charge transfer. The ORR electrocatalytic ability of Fe-S/N-C nanofibers is tested and present excellent property, especially in stability and methanol crossover. The electrocatalytic ability of sample is comparable to that of 20 wt% Pt/C benchmarks. These results offer an easy pathway for exploring metal-heteroatom-codoped carbon nanofibers applicable for ORR catalyst. (C) 2017 Elsevier B.V. All rights reserved.