화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.4, 561-566, August, 2017
굴곡 융착면을 이용한 고밀도폴리에틸렌 관의 버트 융착 공정에서의 열유체 거동 수치모사
Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface
E-mail:
초록
폴리머 재질의 관을 융착 시키기 위해서는 버트 융착 공정을 거치는데, 최근 융착면에 굴곡을 주어 융착 강도를 높이고자 하는 시도가 있었다. 본 연구에서는 융착면의 굴곡이 폴리머의 열유체 거동 및 융착 강도에 어떠한 영향을 미칠 것인지 2차원 축대칭 평면에서 유한요소법을 사용하여 살펴보았으며, 고밀도폴리에틸렌 관을 대상으로 하였다. 열유화 단계에서 융착면의 형상을 따라 굴곡진 상경계면이 나타남을 확인할 수 있었다. 접합 단계에서는 굴곡진 상경계면과 융착면 사이에서의 멜트의 압착 흐름이 나타남을 확인할 수 있었으며, 굴곡융착부의 낮은 전단율은 관의 축과 수직 방향 배향을 완화시켜 융착부 강도 향상에 도움을 줄 수 있을 것으로 예상된다.
Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.
  1. EL-Bagory TM, Sallam HE, Younan MY, Theor. Appl. Fract. Mec., 74, 164 (2014)
  2. Leskovics K, Kollar M, Barczy P, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 419, 138 (2006)
  3. Wood AS, Chem. Eng. Sci., 48, 3071 (1993)
  4. Shillitoe S, Day AJ, Benkreira H, P. I. Mech. Eng. EJ. Pro., 204, 95 (1990)
  5. Benkreira H, Shillitoe S, Day AJ, Chem. Eng. Sci., 46, 135 (1991)
  6. Wood AS, IMA J. Math. Appl. Bus., 7, 117 (1996)
  7. Barber P, Atkinson JR, J. Mater. Sci., 7, 1131 (1972)
  8. Barber P, Atkinson JR, J. Mater. Sci., 9, 1456 (1974)
  9. Colaluca MA, Earles LL, Malguarnera SC, Polym. -Plast. Technol. Eng., 20, 181 (1983)
  10. Decourcy DR, Atkinson JR, J. Mater. Sci., 12, 1535 (1977)
  11. Riahi M, Kooshayan K, Ghanati MF, Polym. -Plast. Technol. Eng., 50, 907 (2011)
  12. Yoo JH, Choi S, Nam J, Ahn KH, Oh JS, Korea-Aust. Rheol. J., 29(1), 37 (2017)
  13. Mao W, Khayat RE, Int. J. Numer. Methods Fluids, 21, 1137 (1995)
  14. Lee SH, Koh HJ, Shim SH, Jung HW, Hyun JC, Korean Chem. Eng. Res., 49(3), 314 (2011)
  15. Huang CC, Winkler RG, Sutmann G, Gompper G, Macromolecules, 43(23), 10107 (2010)
  16. Islam MT, Archer LA, J. Polym. Sci. B: Polym. Phys., 39(19), 2275 (2001)
  17. Padding JT, Briels WJ, J. Chem. Phys., 118(22), 10276 (2003)
  18. Oh JS, Choi SW, The Korean Intellectual Property Office, Application No. 10-2014-0045605(2014).