화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.4, 632-640, July, 2017
산화 재생 셀룰로오스의 제조와 항균 및 지혈 특성 평가
Preparation of Oxidized Regenerated Celluloses and Their Anti-bacterial and Hemostatic Effects
E-mail:
초록
본 연구에서는 이산화질소(NO2)를 사용하여 항균 및 지혈 효과를 갖는 산화 재생 셀룰로오스(oxidized regenerated cellulose, ORC)를 제조하였다. ORC의 물리화학적 변화를 다양한 반응 조건(NO2 반응비, 반응온도, 반응시간)에 따라 관찰하였다. 각각의 산화 조건에 비례하여 ORC 카복실 함량은 증가되었고, 직물의 인장 강도는 NO2 반응비와 반응 온도가 높아짐에 따라 감소되는 것을 관찰하였다. 또한 산화 반응으로 카복실 함량 증가에 의한 pH 저하와 함께 항균 및 지혈 효과가 나타남을 확인하였다. 특히 20% 카복실 함량의 ORC는 지혈 효과가 뛰어나 평균 혈액 손실과 출혈 시간이 74%, 44%로 각각 감소되어 더 좋은 지혈효과를 갖는 것을 관찰하였고, 이식 4주 후 생분해됨을 확인하였다. 따라서 본 연구를 통해 제조된 ORC는 외과적 수술 및 상처 부위의 국소 도포를 통해 항균 효과와 지혈 작용을 갖는 지혈제로 활용이 가능하다고 판단된다.
In this study, we prepared the oxidized regenerated celluloses (ORCs) with anti-bacterial and hemostatic effects by nitrogen dioxide (NO2) oxidation reaction. We observed the physicochemical changes of regenerated celluloses according to different oxidation conditions. The carboxyl content of ORC increased in proportion to the feed molar ratio of NO2, reaction temperature, and reaction time. Tensile strength was enhanced with increasing NO2 feed ratio and reaction temperature. The ORCs demonstrated both anti-bacterial and hemostatic effects due to their pH lowering effect in aqueous condition. Especially, the ORC knit with the 20% carboxyl content demonstrated reduced blood loss and bleeding together with significantly enhanced hemostatic effect. Also, a 4 week’s post-implantation, the ORC knit was not observed anymore because of the absorption by biodegradation. Therefore, these results suggest that the ORC knit is a promising hemostatic formulation with an anti-bacterial effect useful for surgical procedures and injured sites.
  1. Panichpakdee J, Pavasant P, Supaphol P, Polym. Korea, 38(3), 338 (2014)
  2. Gabbay M, Am. J. Health Syst. Pharm., 63, 1244 (2006)
  3. Hutchinson RW, George K, Johns D, Craven L, Zhang G, Shnoda P, Cellulose, 20, 537 (2013)
  4. Wu YD, He JM, Huang YD, Fibers Polym., 5, 582 (2012)
  5. Varma AJ, Chavan VB, Polym. Degrad. Stabil., 49, 245 (1995)
  6. Varma AJ, Kulkarni MP, Polym. Degrad. Stabil., 77, 25 (2002)
  7. Maekawa E, Koshijima T, J. Appl. Polym. Sci., 29, 2289 (1984)
  8. Wu Y, He J, Cheng W, Gu H, Guo Z, Gao S, Huang Y, Carbohydr. Polym., 88, 1023 (2012)
  9. Kumar V, Yang T, Carbohydr. Polym., 48, 403 (2002)
  10. Zimnitsky DS, Yurkshtovich TL, Bychkovsky PM, J. Polym. Sci. A: Polym. Chem., 42(19), 4785 (2004)
  11. He W, Wang F, Wu Y, Huang Y, Zhang H, Cellulose, 18, 1651 (2011)
  12. Cheng W, He J, Wu Y, Song C, Xie S, Huang Y, Fu B, Cellulose, 20, 2547 (2013)
  13. Tahiri C, Vignon MR, Cellulose, 7, 177 (2000)
  14. Kochkar H, Lassalle L, Morawietz M, Holderich WF, J. Catal., 194(2), 343 (2000)
  15. Hirota M, Tamura N, Saito T, Isogai A, Carbohydr. Polym., 78, 330 (2009)
  16. Miller JM, Jackson DA, Collier CS, Exp. Med. Surg., 19, 196 (1961)
  17. Abaev Y, Kaputsky V, Adarchenko A, Sobeshchuk O, Antibiot. Med. Biotechnol., 31, 624 (1986)
  18. Spangler D, Rothenburger S, Nguyen K, Jampani H, Weiss S, Bhende S, Surg. Infect., 4255 (2003).
  19. Lee E, Kim K, Kim B, Polym. Korea, 33(5), 441 (2009)
  20. Martina B, Katerina K, Miloslava R, Jan G, Ruta M, Adv. Polym. Technol., 28(3), 199 (2009)
  21. Wu Y, He J, Cheng W, Gu H, Guo Z, Gao S, Huang Y, Carbohydr. Polym., 88, 1023 (2012)
  22. Dineen P, Surg. Gynecol. Obstet., 142, 481 (1976)
  23. Pernet M, Ann. Chir., 37, 700 (1983)
  24. Dineen P, Surgery, 82, 576 (1977)
  25. Dineen P, J. Surg. Res., 23, 114 (1977)
  26. Ronald MA, Richard B, Microbial Ecology: Fundamentals and Applications, Addison Wesley Longman, California, 1998.