화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.7, 2099-2109, July, 2017
Optimization and analysis of reaction injection molding of polydicyclopentadiene using response surface methodology
E-mail:
Reaction injection molding (RIM) process conditions for polydicyclopentadiene (PolyDCPD) were optimized by using a Box-Behnken design (BBD) from the response surface methodology (RSM). The RIM process parameters, such as smoke time, exotherm time, highest exotherm and PolyDCPD conversion, were tuned by changing the variables (the amount of catalyst, cocatalyst and moderator). Under the optimized condition, the ring-opening metathesis polymerization reaction of dicyclopentadiene did not occur within 100 s, the maximum temperature was reached within 4min, and the polydicyclopentadiene conversion was over 98%. Therefore, dicyclopentadiene could be safely put into the mold in a total cycle time of less than 6min and produce PolyDCPD with mechanical properties sufficient for industry applications.
  1. Cheah LW, U.S, Doctoral Thesis, Massachusetts Institute of Technology (2010).
  2. Lutsey N, Institute of Transportation Studies, University of California (2010).
  3. Sinha R, Pelot DD, Zhou ZP, Rahman A, Wu XF, Yarin AL, J. Mater. Chem., 22, 9138 (2012)
  4. Hu F, Du J, Zheng Y, Polym. Compos., 35, 1918 (2014)
  5. Mol JC, J. Mol. Catal. A-Chem., 213(1), 39 (2004)
  6. Jamroz ME, Gałka S, Dobrowolski JC, J. Mol. Struct., 634, 225 (2003)
  7. Li H, Wang Z, He B, J. Mol. Catal. A-Chem., 147, 83 (1999)
  8. Shan W, Mei Y, Polym. Sci. Ser. B, 55, 344 (2013)
  9. Hsu HC, Wang SJ, Ou JDY, Wong DSH, Ind. Eng. Chem. Res., 54(40), 9798 (2015)
  10. Bergstrom C, Koskinen J, Halme E, Lindstrom M, Perala M, US Patent, 6,294,706B1 (2001).
  11. Rule JD, Moore JS, Macromolecules, 35(21), 7878 (2002)
  12. Zou JJ, Zhang XW, Kong J, Wang L, Fuel, 87(17-18), 3655 (2008)
  13. Bruno TJ, Huber ML, Lemmon EW, Perkins RA, National Institute of Standards and Technology (2006).
  14. Xing E, Zhang X, Wang L, Mi Z, Green Chem., 9, 589 (2007)
  15. Special Reports, Opportunities in C5 Chemicals: A Business Analysis prospectus, NexantThinkingTM (http://thinking.nexant.com/) (2014).
  16. C5 Value Chain Study: From Cracker to Key C5 Derivative Applications for Isoprene, DCPD and Piperylene, IHS Chemical, Special Report Prospectus (2015).
  17. Global Polydicyclopentadiene (PDCPD) Industry Report 2016, QYR Chemical & Material Research Center (2016).
  18. Takahiro M, The latest technologies and applications of RIM molding (DCPD), Plastic Age (2008).
  19. Sojitz New Release, July 8, Sojitz corporation, (https://www.sojitz. com/en/news/yearly/2008/) (2008).
  20. Bogomolova MN, Zemlyakov DI, Sidorenko NI, Ashirov RV, Rusakov DA, Chaikovskii VK, Int. Polymer Sci. Technol., 40, 7 (2012)
  21. Yao Z, Zhou LW, Dai BB, Cao K, J. Appl. Polym. Sci., 125(4), 2489 (2012)
  22. Grubbs RH, Tetrahedron, 60, 7117 (2004)
  23. Doughty S, Recher G, Yang YS, Kunstst. Ger. Plast., 82, 12 (1992)
  24. Elder RM, Andzelm JW, Sirk TW, Chem. Phys. Lett., 637, 103 (2015)
  25. Gong L, Liu K, Ou E, Xu F, Lu Y, Wang Z, Gao T, Yang Z, Xu W, RSC Adv., 5, 26185 (2015)
  26. Lee EJ, Kim HS, Lee BK, Hwang WS, Sung IK, Lee IM, Bull. Korean Chem. Soc., 33, 4131 (2012)
  27. Kovacic S, Acta Chim. Slov., 60, 448 (2013)
  28. Hong CH, Song SW, Nam BU, Cha BJ, Kim BJ, Polym. Korea, 30(4), 311 (2006)
  29. Ofstead EA, Calderon N, Makromol. Chem., 154, 21 (1972)
  30. Amass AJ, Lotfipour M, Zurimendi JA, Tighe BJ, Thompson C, Makromol. Chem., 188, 2121 (1987)
  31. Layer RW, US Patent, 4,484,010 (1993).
  32. Ledoux N, Doctoral Thesis, Universiteit Gent (2007).
  33. Jeong W, Kessler MR, Chem. Mater., 20, 7060 (2008)
  34. Bluestone S, Heister SD, Son SF, 46th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 1 (2010).
  35. Kroschwitz JI, Howe-Grant M, Encyclopedia of Chemical Technology, Wiley Interscience, New York, 17, 829 (1996).
  36. Andjelkovic DD, Larock RC, Biomacromolecules, 7(3), 927 (2006)
  37. Kong WS, Ju TJ, Park JH, Int. J. Adhes. Adhes., 38, 7 (2012)
  38. Teixeira A, Ribeiro B, Rapid Product Development, 1 (2010).
  39. Monsaert S, Ledoux N, Drozdzak R, Verpoort F, J. Polym. Sci. A: Polym. Chem., 48(2), 302 (2010)
  40. Klosiewicz DW, US Patent, 4,520,181 (1985).
  41. Astruc D, New J. Chem., 29, 42 (2005)
  42. Kelsey DR, Handlin DL, Narayana M, Scardino BM, J. Polym. Sci. A: Polym. Chem., 35(14), 3027 (1997)
  43. Yang YS, Lafontaine E, Mortaigne B, Polymer, 38(5), 1121 (1997)
  44. Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A, Bioresour. Technol., 99(11), 4597 (2008)
  45. Beikdashti MH, Forootanfar H, Safiarian MS, Ameri A, Ghahremani MH, Khoshayand MR, Faramarzia MA, J. Taiwan Inst. Chem. Eng., 43, 670 (2012)
  46. Box GEP, Behnken DW, Technometrics, 2, 455 (1960)
  47. Montogomery DC, Design and Analysis of Experiments, Wiley, New York (2001).
  48. Singh K, Srivastava G, Talat M, Srivastava ON, Kayastha AM, Biophys. Rep., 3, 18 (2015)
  49. Ali CH, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ, J. Taiwan Inst. Chem. Eng., 52, 7 (2015)
  50. Jafari AJ, Kakavandi B, Kalantary RR, Gharibi H, Asadi A, Azari A, Babaei AA, Takdastan A, Korean J. Chem. Eng., 33(10), 2878 (2016)
  51. Chen L, Yin P, Qu RJ, Chen XY, Xu Q, Tang QH, Chem. Eng. J., 173(2), 583 (2011)
  52. Klosiewicz DW, US Patent, 4,400,340 (1983).
  53. Martin AE, US Patent, 4,918,039 (1988).
  54. Yang YS, Lafontaine E, Mortaigne B, Polymer, 38(5), 1121 (1997)
  55. Le Gaca PY, Choqueusea D, Parisb M, Recherc G, Zimmerd C, Melote D, Polym. Degrad. Stabil., 98, 809 (2013)