화학공학소재연구정보센터
Clean Technology, Vol.23, No.2, 196-204, June, 2017
단순 침전법으로 제조한 가시광선용 CdZnS/ZnO 광촉매의 재활용 특성
Recycling Properties of Visible-Light Driven CdZnS/ZnO Photocatalyst Prepared by a Simple Precipitation Method
E-mail:
초록
CdZnS/ZnO 복합체를 저온에서의 침전 및 건조 과정을 거쳐 제조한 다음, 가시광선 조사하에서 로다민 B 염료의 광분해에 대한 광촉매로서의 활성 특히 광촉매 재활용 특성에 대해 중점을 두고 고찰하였다. 광반응 과정에서의 광촉매 변화를 조사 하기 위해 X선 회절분석기, 전계방사형 주사전자현미경, X-선 광전자 분광법, UV-vis 확산반사 분광법 그리고 광자발광 분광기 등을 이용하여 반응 전후의 광촉매 시료에 대해 물성분석을 행하였다. 계속적으로 반복되는 반응을 통하여 CdZnS/ZnO 광촉매는 보다 향상되고 안정된 활성을 나타냄을 볼 수 있었다. 로다민 B의 광분해반응에 대해 가능한 두 가지의 반응기구 중에서도 본 연구에서는 발색단 골격의 탈알킬화 반응보다는 발색단 콘쥬케이트 구조의 절단 과정을 거쳐 주로 반응이 진행되는 것으로 확인되었다. 이러한 결과들로부터 단순 침전법으로 용이하게 제조할 수 있는 CdZnS/ZnO는 비교적 높은 활성과 재활용성을 지닌 가시광선용 광촉매로 사용 가능하다는 것을 알 수 있었다.
CdZnS/ZnO composite was prepared through low-temperature precipitation and drying method. The property of CdZnS/ZnO as a recyclable photocatalyst for the degradation of rhodamine B (RhB) under visible light irradiation was examined. The sample was characterized by XRD, FE-SEM, XPS, UV-vis DRS and photoluminescence techniques before and after repeated reaction to investigate the change of properties during the photocatalytic reaction. During repeated reaction, the CdZnS/ZnO showed an improved photocatalytic activity and recycle stability. Among two feasible reaction pathways for photocatalytic degradation of RhB, the cleavage of conjugated chromophore was found to predominate over N-dealkylation of chromophore skeleton in the present work. The results indicate that the CdZnS/ZnO, prepared by a simple precipitation method, can be used as a visible-light driven photocatalyst with enhanced cycle stability and activity.
  1. Etacheri V, Valentin CD, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015)
  2. Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211 (2011)
  3. Hernandez-Ramirez A, Medina-Ramirez I, in: Hernandez- Ramirez A, Medina-Ramirez I, Eds., Semiconducting Materials in Photocatalytic Semiconductors, Synthesis, Characterization, and Environmental Applications, Springer, Switzerland, pp. 1-40 (2015).
  4. Yue X, Yi S, Wang R, Zhang Z, Qiu S, Sci. Rep., 6, 22268 (2016)
  5. Zhu HY, Jiang R, Xiao L, Chang YH, Guan YJ, Li XD, Zeng GM, J. Hazard. Mater., 169(1-3), 933 (2009)
  6. Fan Y, Deng M, Chen G, Zhang Q, Luo Y, Li D, Meng Q, J. Alloy. Compd., 509, 1477 (2011)
  7. Chen F, Jia D, Cao Y, Jin X, Liu A, Ceram. Int., 41, 14604 (2015)
  8. Sehati S, Entezari MH, J. Colloid Interface Sci., 462, 130 (2016)
  9. Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J, ACS Catal., 3, 882 (2013)
  10. Zhou YN, Wang YG, Wen T, Zhang SY, Chang BB, Guo YZ, Yang BC, J. Colloid Interface Sci., 467, 97 (2016)
  11. Li NX, Zhou BY, Guo PH, Zhou JC, Jing DW, Int. J. Hydrog. Energy, 38(26), 11268 (2013)
  12. Xiong Z, Zheng M, Zhu C, Zhang B, Ma L, Shen W, Nanoscale Res. Lett., 8, 334 (2013)
  13. Huang MN, Yu JH, Deng CS, Huang YH, Fan MG, Li B, Tong ZF, Zhang FY, Dong LH, Appl. Surf. Sci., 365, 227 (2016)
  14. Wang X, Tian H, Cui X, Zheng W, Liu Y, Dalton Trans., 43, 12894 (2014)
  15. Narayanam PK, Soni P, Srinivasa RS, Talwar SS, Major SS, J. Phys. Chem. C, 117, 4314 (2013)
  16. Min Y, Fan J, Xu Q, Zhang S, J. Alloy. Compd., 609, 46 (2014)
  17. Zhang J, Xu Q, Qiao SZ, Yu J, ChemSusChem, 6, 2009 (2013)
  18. Lee JH, Jin Y, Park SS, Hong SS, Lee GD, Appl. Chem. Eng., 26(3), 356 (2015)
  19. McBride RA, Kelly JM, McCormack DE, J. Mater. Chem., 13, 1196 (2003)
  20. Khan ZR, Zulfequar M, Khan MS, J. Mater. Sci., 46(16), 5412 (2011)
  21. Sepulveda-Guzman S, Reeja-Jayan B, de la Rosa E, Torres-Castro A, Gonzalez-Gonzalez V, Jose-Yacaman M, Mater. Chem. Phys., 11, 172 (2009)
  22. Kozlova EA, Markovskaya DV, Cherepanova SV, Saraev AA, Gerasimov EY, Perevalov TV, Kaichev VV, Parmon VN, Int. J. Hydrog. Energy, 39(33), 18758 (2014)
  23. Xie SL, Lu XH, Zhai T, Gan JY, Li W, Xu M, Yu MH, Zhang YM, Tong YX, Langmuir, 28(28), 10558 (2012)
  24. Wang W, Zhu W, Xu H, J. Phys. Chem. C, 112, 16754 (2008)
  25. Cui WQ, Ma SS, Liu L, Hu JS, Liang YH, McEvoy JG, Appl. Surf. Sci., 271, 171 (2013)
  26. Li D, Wu ZD, Xing CS, Jiang DL, Chen M, Shi WD, Yuan SQ, J. Mol. Catal. A-Chem., 395, 261 (2014)
  27. Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13(2), 113 (2001)
  28. Li YC, Ye MF, Yang CH, Li XH, Li YF, Adv. Funct. Mater., 15(3), 433 (2005)
  29. Kulkarni SK, Winkler U, Deshmukh N, Borse PH, Fink R, Umbach E, Appl. Surf. Sci., 169, 438 (2001)
  30. Xu X, Lu RJ, Zhao XF, Zhu Y, Xu SL, Zhang FZ, Appl. Catal. B: Environ., 125, 11 (2012)
  31. Shouli B, Xin L, Dianqing L, Song C, Ruixian L, Aifan C, Sens. Actuators B-Chem., 153, 110 (2011)
  32. Liangyuan C, Zhiyong L, Shouli B, Kewei Z, Dianqing L,. Aifan C, Liu CC, Sens. Actuators B-Chem., 143, 620 (2010)
  33. Li WJ, Shi EW, Zhong WZ, Yin ZW, J. Cryst. Growth, 203, 186 (1999)
  34. De la Rosa E, Sepulveda-Guzman S, Reeja-Jayan B, Torres A, Salas P, Elizondo M, Jose-Yacaman M, J. Phys. Chem. C, 111, 8489 (2007)
  35. Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, Shin HS, Mater. Res. Bull., 42(9), 1640 (2007)
  36. Zhang J, Yu J, Jaroniec M, Gong JR, Nano Lett., 12, 4584 (2012)
  37. Yu K, Yang SG, He H, Sun C, Gu CG, Ju YM, J. Phys. Chem. A, 113(37), 10024 (2009)
  38. Wu TX, Liu GM, Zhao JC, Hidaka H, Serpone N, J. Phys. Chem. B, 102(30), 5845 (1998)
  39. Kozlova EA, Cherepanova SV, Markovskaya DV, Saraev AA, Gerasimov EY, Parmon VN, Appl. Catal. B: Environ., 183, 197 (2016)
  40. Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Domen K, Li C, Chem. Commun., 2142-2143 (2003).
  41. Wei S, Shifu C, Sujuan Z, Wei Z, Huaye Z, Xiaoling Y, J. Nanopart. Res., 12, 1355 (2010)
  42. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C, J. Am. Ceram. Soc., 130, 7176 (2008)
  43. Huang H, Li D, Lin Q, Zhang W, Shao Y, Chen Y, Sun M, Fu X, Environ. Sci. Technol., 43, 4164 (2009)
  44. Chen C, Zhao W, Li J, Zhao J, Environ. Sci. Technol., 36, 3604 (2002)
  45. Zhuang JD, Dai WX, Tian QF, Li ZH, Xie LY, Wang JX, Liu P, Shi XC, Wang DH, Langmuir, 26(12), 9686 (2010)
  46. Cruz AM, Perez UMG, Mater. Res. Bull., 45, 135 (2010)
  47. Chen F, Zhao J, Hidaka H, Int. J. Photoenergy, 5, 209 (2003)
  48. Takirawa T, Watanabe T, Honda K, J. Phys. Chem., 82, 1391 (1978)
  49. Li X, Ye J, J. Phys. Chem. C., 111, 13109 (2007)
  50. Merka O, Yarovyi V, Bahnemann DW, Wark M, J. Phys. Chem. B, 115(24), 8014 (2011)