화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.3, 351-354, June, 2017
역미셀을 이용한 감마-알루미나 나노입자 합성에 대한 통계적 분석
Statistical Analysis of Synthesis of Gamma-alumina (γ-Al2O3) Nanoparticles Using Reverse Micelles
E-mail:
초록
역미셀법을 이용하여 열적 안정성이 우수한 감마-알루미나의 합성 공정을 최적화하기 위하여 실험계획법을 사용하였다. 먼저 합성공정에 주 요소인 계면활성제, 물 및 오일의 비에 대한 최적의 실험조건을 설계하기 위하여 혼합물 실험 법을 이용하여 12가지 실험조건을 도출하였다. 설계된 조건에서 역미셀법을 이용하여 합성한 입자를 900 ℃에서 소성한 결과 입자의 크기에 차이는 있었지만 모두 감마-알루미나 결정구조를 가졌다. 도출된 실험결과를 이용하여 계산된 2차 회귀모델의 결정계수는 93.68%이었으며, P- 값이 0.002로서 유의하다고 할 수 있다. 다양한 입자크기를 가지는 감마-알루미나의 합성조건을 모든 범위에서 대하여 표면도와 등고선도를 이용하여 제시하였다. 그 결과 Surfactant/ Water/Oil의 질량비가 0.3450/0.0729/0.5821인 조건에서 합성할 때 약 2.8 nm의 가장 작은 입자가 합성되는 것으로 계산 되었다.
An experimental design method was used to optimize the synthesis of gamma-alumina with a superior thermal stability using the reverse micelle method. First, twelve experimental conditions were derived by using the mixture design method to optimize conditions for the ratio of surfactant, water and oil, which are main factors in the synthesis process. When the particles synthesized by reverse micelle method were calcined at 900 ℃ under the designed condition, they all had gamma-alumina crystal structure although there were differences in particle sizes. The coefficient of determination of the second-order regression model using the derived experimental results was 93.68% and the P-value was 0.002. The synthesis conditions forgamma- alumina with various particle sizes were presented using surface and contour lines. As a result, it was calculated that the smallest particle size of about 2.8 nm was synthesized when the ratio of surfactant/water/oil was 0.3450/0.0729/0.5821.
  1. Arai H, Machida M, Appl. Catal. A: Gen., 138(2), 161 (1996)
  2. Wang XH, Lu GZ, Guo Y, Wang YS, Guo YL, Mater. Chem. Phys., 90(2-3), 225 (2005)
  3. Wilson SJ, J. Solid State Chem., 30, 247 (1979)
  4. Dynys FW, Halloran JW, J. Am. Ceram. Soc., 65, 442 (1982)
  5. Xu B, Xiao T, Yan Z, Sun X, Sloan J, Gonzalez-Cortes SL, Alshahrani F, Green MLH, Microporous Mesoporous Mater., 91, 293 (2006)
  6. Yao N, Xiong GX, Zhang YH, He MY, Yang WS, Catal. Today, 68(1-3), 97 (2001)
  7. Zhang ZX, Bai P, Xu B, Yan ZF, J. Porous Mat., 13, 245 (2006)
  8. Zilkova N, Zukal A, Cejka J, Microporous Mesoporous Mater., 95, 176 (2006)
  9. Kim JH, Jung KY, Park KY, Cho SB, Microporous Mesoporous Mater., 128, 85 (2010)
  10. Martin MY, Gomez LS, Milosevic O, Rabanal ME, Ceram. Int., 36, 767 (2010)
  11. Eicke HF. Parfitt GD, Interfacial Phenomena in Apolar Media, 41-49, Marcel Dekker, New York, USA (1986).
  12. Boutonnet M, Kizling J, Stenius P, Marie G, Colloids Surf., 5, 209 (1982)
  13. Fendler JH, Chem. Rev., 87, 877 (1987)
  14. Motte L, Petit C, Lixon P, Boulanger L, Pileni MP, Langmuir, 8, 1049 (1992)
  15. Pileni MP, Langmuir, 13(13), 3266 (1997)
  16. Kawai T, Fujino A, Kon-No K, Colloids Surf. A: Physicochem. Eng. Asp., 109, 245 (1996)
  17. Kon-No K, Synthesis of monodisperse GeO2 particles in reversed micellar systems, in: E. Pelizzetti (Ed.), Fine Particles Science and Technology, 431-442, Kluwer Academic, Dordrecht, Netherlands (1996).
  18. Walpole RE, Ye KE, Raymond, Myers H, Myers SL, Probability and Statistics for Engineers and Scientists, 9th ed., 639-652, Prentice Hall, Boston, MA, USA (2012).
  19. Mason RL, Gunst RF, Hess JL, Statistical Design and Analysis of Experiments, with Applications to Engineering and Science, 2nd ed., 568-597, Wiley-Interscience, NJ, USA (2003).
  20. Kawai T, Usui Y, Kon-No K, Colloids Surf. A: Physicochem. Eng. Asp., 149, 39 (1999)
  21. Chang WI, Kang SW, Lee KR, J. Korean Ceram. Soc., 35, 594 (1998)