화학공학소재연구정보센터
Inorganic Chemistry, Vol.56, No.5, 2966-2976, 2017
Rhenium Complexes Based on 2-Pyridyl-1,2,3-triazole Ligands: A New Class of CO2 Reduction Catalysts
A series of [Re((NN)-N-Lambda)(CO)(3)(X)] ((NN)-N-Lambda = diimine 12 and X = halide) complexes based on 4-(2-pyridyl)-1,2,3-triazole (pyta) and 1-(2-pyridyl)-1,2,3-triazole (tapy) diimine ligands have been prepared and electrochemically characterized. The first ligandbased reduction process is shown to be highly sensitive to the nature of the isomer as well as to the substituents on the pyridyl ring, with the peak potential changing by up to 700 mV. The abilities of this class of complexes to catalyze the electroreduction and photo reduction of CO2 were assessed for the first time. It is found that only Re pyta complexes that have a first reduction wave with a peak potential at ca. -1.7 V vs SCE are active, producing CO as the major product, together with small amounts of H-2 and formic acid. The catalytic wave that is observed in the CVs is enhanced by the addition of water or trifluoroethanol as a proton source. Long-term controlled potential electrolysis experiments gave total Faradaic yield close to 100%. In particular, functionalization of the triazolyl ring with a 2,4,6-tri-tert-butylphenyl group provided the catalyst with a remarkable stability.