화학공학소재연구정보센터
Chemical Physics Letters, Vol.671, 161-164, 2017
Selectivity for CO2 over CH4 on a functionalized periodic mesoporous phenylene-silica explained by transition state theory
Efficient separation of CO2/CH4 is critical in biogas upgrading, requiring highly selective adsorbents. Based on the adsorption energies of 0.30 and 0.14 eV, previously calculated by dispersion corrected density functional theory for adsorption/desorption of CO2 and CH4 on the functionalized periodic mesoporous phenylene-silica material APTMS@Ph-PMO, respectively, transition state theory rates were derived and used to simulate the adsorption/desorption rates of these two gases on APTMS@Ph-PMO. The latter yielded an estimation of initial CO2/CH4 selectivity at various temperatures. At T= 298 K, selectivity of 32.2 agrees to an experimental value of 26.1, which validates the method used for evaluating CO2/CH4 adsorption selectivities. 2017 Elsevier B.V. All rights reserved.