화학공학소재연구정보센터
Applied Surface Science, Vol.403, 509-518, 2017
Development of thermosensitive microgel-loaded cotton fabric for controlled drug release
COS-g-PVCL copolymer was synthesized and infiltrated into CaCO3 particles to prepare thermosensitive porous microgels which exhibited phase transition behavior at the temperature that was similar to the lower critical solution temperature(LCST) of copolymer. The incorporation of microgel to cotton was done by pad-dry-cure method from aqueous microparticle dispersion that contained citric acid as a crosslinking agent. In vitro drug release experiments were performed at two different temperatures (25 and 37 degrees C) in PBS of pH 7.4 to study its drug release behavior with response to temperature. Due to the shrinkage of microgels, drug release profiles obtained were found to have enhanced release for aloin when the temperature was above LCST than other release conditions. Microgel-loaded fabrics proved to be in vivo biocompatible by skin irritation studies and displayed an obviously high water vapor permeability at 40 degrees C. The MTT assay showed no obvious cytotoxicity of microgel-loaded cotton against mouse fibroblast cells within 5 days. The results obtained demonstrated the potential use of the thermos-responsive microgel-loaded cotton fabrics as a textile-based drug delivery system for treating sunburn or skin care. (C) 2017 Elsevier B.V. All rights reserved.