화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.4, 335-343, April, 2017
Polypyrrole Nanocomposite with Water-Dispersible Graphene
E-mail:
Scalable water-dispersible graphene (eGPNc) powders were prepared with consecutive chlorosulfonic acid (CSA)/H2O2 and methylmorpholine N-oxide monohydrate (NMMOm) treatments, followed by the common filtering, sonication, and drying processes. The yield of graphene from expanded graphite (EG) powders prepared by the combined CSA/H2O2 and NMMOm treatments (3.0 wt%) was more than five times that from only the NMMOm treatment (0.6 wt%). The produced eGPNc powders had an almost defect-free graphitic structure with good redispersibility in water and an electrical conductivity of 86.9 S/cm from the filtered eGPNc film. The eGPNc film was dispersed at 0.28 mg/mL in water after centrifugation of the 2 mg/mL aqueous solution at 5000 rpm. The aqueous eGPNc solution was utilized as the reaction medium for the in situ polymerization of pyrrole to produce the polypyrrole (PPy)/graphene nanocomposite. The capacitance of PPy measured from cyclic voltammetry (CV) was improved from 122.8 to 278.6 F/g by loading 1 wt% eGPNc onto the nanocomposite. The capacitance of PPy after 1000 CV cycles was improved from 54.0% to 91.0% by loading 3 wt% eGPNc onto the nanocomposite. This improvement in the capacitance and capacitance-stability is due to the in situ formation of PPy in the well-dispersed aqueous graphene solution. Thus, this simple in situ preparation of PPy with eGPNc in water demonstrated the potential for the diverse applications of water-dispersible eGPNc in various water-based systems such as conducting inks, silver wires, and watersoluble conducting polymers (e.g. poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PSS/PEDOT)) for improving their electron conductivity and stability.
  1. Coleman JN, Accounts Chem. Res., 46, 14 (2013)
  2. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun'ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN, Nat. Nanotechnol., 3(9), 563 (2008)
  3. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang ZM, McGovern IT, Duesberg GS, Coleman JN, J. Am. Chem. Soc., 131(10), 3611 (2009)
  4. Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN, Langmuir, 26(5), 3208 (2010)
  5. Du W, Jiang X, Zhu L, J. Mater. Chem. A, 1, 10592 (2013)
  6. O’Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN, J. Phys. Chem. C, 115, 5422 (2011)
  7. Lu W, Liu S, Qin X, Wang L, Tian J, Luo Y, Asiri AM, Al-Youbi AO, Sun X, J. Mater. Chem., 22, 8775 (2012)
  8. Ball DL, Edwards JO, J. Am. Chem. Soc., 78, 1125 (1956)
  9. Kim DH, Tan LS, Park SY, J. Mater. Chem. C, 3, 7105 (2015)
  10. Zhang LL, Zhao SY, Tian XN, Zhao XS, Langmuir, 26(22), 17624 (2010)
  11. Attia NF, Lee SM, Kim HJ, Geckeler KE, Int. J. Energy Res., 38(4), 466 (2014)
  12. Wu TM, Lin SH, J. Polym. Sci. B: Polym. Phys., 44(10), 1413 (2006)
  13. Han Y, Qing X, Ye S, Lu Y, Synth. Met., 160, 1159 (2010)
  14. Lim YS, Tan YP, Lim HN, Huang NM, Tan WT, J. Polym. Res., 20, 1 (2013)
  15. Cvetko BF, Brungs MP, Burford RP, Skyllas-Kazacos, J. Mater. Sci., 23, 2102 (1988)
  16. Snook GA, Kao P, Best AS, J. Power Sources, 196(1), 1 (2011)
  17. Faye A, Dione G, Dieng MM, Aaron JJ, Cachet H, Cachet C, J. Appl. Electrochem., 40(11), 1925 (2010)
  18. Wang J, Xu Y, Wang J, Du X, Xiao F, Li J, Synth. Met., 160, 1826 (2010)
  19. Jeong HK, Jin M, Ra EJ, Sheem KY, Han GH, Arepalli S, Lee YH, ACS Nano, 4, 1162 (2010)
  20. Chen Z, Augustyn V, Wen J, Zhang YW, Shen MQ, Dunn B, Lu YF, Adv. Mater., 23(6), 791 (2011)
  21. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH, Polymer, 51(25), 5921 (2010)
  22. Han yq, Hao LA, Zhang XG, Synth. Met., 160, 2336 (2010)
  23. Liu A, Li C, Bai H, Shi G, J. Phys. Chem. C, 114, 22783 (2010)
  24. Xu J, Wang K, Zu SZ, Han BH, Wei Z, ACS Nano, 4, 5019 (2010)
  25. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  26. Khan U, O'Neill A, Lotya M, De S, Coleman JN, Small, 6, 864 (2010)
  27. May P, Khan U, Hughes JM, Coleman JN, J. Phys. Chem. C, 116, 11393 (2012)
  28. Khan U, Porwal H, O'Neill A, Nawaz K, May P, Coleman JN, Langmuir, 27(15), 9077 (2011)
  29. Min Y, Zhigang S, Xiaojing Z, Shulin M, J. Phys. D-Appl. Phys., 46, 025301 (2013)
  30. Khan U, O’Neill A, Porwal H, May P, Nawaz K, Coleman JN, Carbon, 50, 470 (2012)
  31. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C, Nat. Commun., 5 (2014)
  32. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nat. Nanotechnol., 3(2), 101 (2008)
  33. Eda G, Fanchini G, Chhowalla M, Nat. Nanotechnol., 3(5), 270 (2008)
  34. Si Y, Samulski ET, Nano Lett., 8, 1679 (2008)
  35. Yin J, Chang R, Shui Y, Zhao X, Soft Matter, 9, 7468 (2013)
  36. Zhou HH, Han GY, Xiao YM, Chang YZ, Zhai HJ, J. Power Sources, 263, 259 (2014)
  37. Jin M, Liu YY, Li YL, Chang YZ, Fu DY, Zhao H, Han GY, J. Appl. Polym. Sci., 122(5), 3415 (2011)