화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.2, 267-275, March, 2017
난연제/몬모릴로나이트로 보강된 SBR 나노복합체의 난연 특성
Fire Resistant Properties of SBR Nanocomposites Reinforced with Flame Retardants/Montmorillonite
E-mail:
초록
본 연구에서는 난연제인 염화파라핀 왁스(CPW)를 변량하여 합성고무(SBR)/몬모릴로나이트(MMT) 나노복합체를 제조하여 기계적 특성과 난연 특성을 검토하였다. 시료(T-1~T-8)를 제조하기 위하여 MMT(Cloisite 15A)는 10 phr로 고정하였고, CPW의 함량은 각각 0, 10, 20, 30 phr으로 변량하였다. 난연제만 첨가된 SBR 컴파운드보다 SBR/MMT 나노복합체의 기계적 물성과 열적 물성이 증가하였고, 난연제인 CPW 함량이 높을수록 기계적 물성은 저하되었다. SBR/MMT 나노 복합체에 대한 한계산소지수(LOI) 시험 결과로부터 CPW 함량이 20 phr 이하인 경우 LOI 값은 22.3~26.4%를 나타내었지만, CPW 함량이 30 phr 첨가시 산소지수는 30.2%로 향상됨을 알 수 있었다. 난연 등급 시험에서는 30 phr의 난연제 함량을 갖는 SBR/MMT 나노복합체가 UL 94 V-0급에 해당하는 우수한 난연특성을 얻었다.
Synthetic rubber (SBR)/montmorillonite (MMT) nanocomposites with varying contents of chlorinated paraffin wax (CPW) as flame retardant were prepared, and then investigated the mechanical properties and the flame retardant properties of the nanocomposites. The content of MMT was fixed on 10 phr and that of CPW was varied on 0, 10, 20, 30 phr, respectively. The mechanical and thermal properties of SBR/MMT nanocomposites than those of the SBR compound added with flame retardants were increased, and that increasing of CPW content resulted in decreasing of the mechanical properties. From the results of limited oxygen index for the SBR/MMT nanocomposite, limiting oxygen index (LOI) value of CPW contents less than 20 phr represented 22.3~26.4%, and also that of 30 phr CPW contents improved to 30.2%. In the UL 94 measurement test, the SBR/MMT nanocomposites with flame retardant content of 30 phr were shown excellent flame retarding characteristics equivalent to UL 94 V-0 grade.
  1. Kallitsis K, Kalfoglou NK, J. Appl. Polym. Sci., 37, 453 (1989)
  2. Marinovic T, Sustar M, Pertot A, Susteric Z, Polym. Int., 45, 77 (1998)
  3. Botros SH, Abdel-Nour, Polym. Degrad. Stabil., 62, 479 (1998)
  4. Pinnavaia TJ, Beall GW, Polymer-Clay Nanocomposites, John Wiley & Sons Ltd., New York, 2000.
  5. Garces JM, Moll DJ, Bicerano J, Fibiger R, McLeod DG, Adv. Mater., 12(23), 1835 (2000)
  6. Shi H, Lan T, Pinnavaia TJ, Chem. Mater., 8, 1584 (1996)
  7. Park CS, Cheng WW, Rubber Technology, 1, 114 (2000)
  8. ASTM Designation, D 2084 76T (1972).
  9. ISO 4589-2, Plastics determination of burning behaviour by oxygen index (2011).
  10. Fornes TD, Yoon PJ, Keskkula H, Paul DR, Polymer, 42(25), 9929 (2001)
  11. Ganter M, Gronski W, Reichert P, Mulhaupt R, Rubber Chem. Technol., 74, 221 (2002)
  12. Kang BS, Kim W, Elastomer, 42, 9 (2007)
  13. Xu RJ, Manias E, Snyder AJ, Runt J, Macromolecules, 34(2), 337 (2001)
  14. Ray SS, Okamoto M, Prog. Polym. Sci, 28, 1539 (2003)
  15. Messersmith PB, Giannelis EP, J. Polym. Sci. A: Polym. Chem., 33(7), 1047 (1995)
  16. Boonstra BB, Polymer, 20, 691 (1979)
  17. Qin H, Zang S, Zhao C, Feng M, Yang M, Shu Z, Yang S, Polym. Degrad. Stabil., 85, 807 (2004)
  18. Conant FS, “Physical Testing of Vulcanizates”, in Rubber Technology, Van Nostrand, New York, p 134 (1987).
  19. Camino G, Lomakin SM, Lageard M, Polymer, 43(7), 2011 (2002)
  20. Lee YS, Lee WK, Cho SG, Kim I, Ha CS, J. Anal. Appl. Pyrolysis, 78, 89 (2007)
  21. Gilma JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Philips SH, Chem. Mater., 12, 1866 (2000)
  22. Xu XM, Gao CH, Zheng Q, Polym. Eng. Sci., 48(4), 656 (2008)
  23. Matthan RK, “Glass-rubber transition behavior”, in Rubber Engineering, McGraw-Hill, New York, p 103 (1998).
  24. Tang Y, Hu Y, Zhang R, Gui Z, Wang ZZ, Chen ZY, Fan WC, Polymer, 45(15), 5317 (2004)
  25. Payne AR, Whittaker RE, Rubber Chem. Technol., 44, 440 (1971)
  26. Kim JP, Lyu SG, Bae KS, Sur GS, Polym. Korea, 25(2), 263 (2001)
  27. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Philips SH, Chem. Mater., 12, 1866 (2000)
  28. Tang Y, Hu Y, Zhang R, Gui Z, Wang ZZ, Chen ZY, Fan WC, Polymer, 45(15), 5317 (2004)