화학공학소재연구정보센터
Applied Surface Science, Vol.392, 27-35, 2017
Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries
Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H2SO4/HNO3 considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H3PO4 preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers. (C) 2016 Elsevier B.V. All rights reserved.