화학공학소재연구정보센터
Applied Energy, Vol.184, 1508-1516, 2016
Multi-objective optimization and simulation model for the design of distributed energy systems
In this paper, a multi-objective optimization model for the investment planning and operation management of distributed heat and electricity supply systems is presented. Different energy efficiency measures and supply options are taken into account, including various distributed heat and power generation units, storage systems and energy-saving renovation measures. Furthermore, district heating networks are considered as an alternative to conventional, individual heat supply for each building. The optimization problem is decomposed into three subproblems to reduce the computational complexity. This enables a high level of detail in the optimization and simultaneously the comprehensive investigation of districts with more than 100 buildings. These capabilities distinguish the model from previous approaches in this field of research. The developed model is applied to a district in a medium-sized town in Germany in order to analyze the effects of different efficiency measures regarding total costs and emissions of CO2 equivalents. Based on the Pareto efficient solutions, technologies and efficiency measures that can contribute most efficiently to reduce greenhouse gas emissions are identified. (C) 2016 Elsevier Ltd. All rights reserved.