화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.200, 659-665, 2017
Photocatalytic degradation of bisphenol A by oxygen-rich and highly visible-light responsive Si12O17Cl2 nanobelts
Visible light responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to resolve environmental pollution problems through utilizing solar energy. Bismuth oxychloride (BiOC1) with a band gap of about 3.4 eV is widely recognized as an effective photocatalyst for the degradation of organic dye molecules under visible light irradiation, but such a photocatalytic degradation has to be assisted by dye-sensitization. Thus, preparation of BiOC1 photocatalyst to achieve visible light response without dye-sensitization is greatly desired, as this would greatly expand their practical applications for the degradation of non-dye pollutants. In this work, oxygen-rich Bi12O12Cl2 nanobelts with a band gap of 2.07 eV were synthesized by using a solvothermal route, and their photocatalytic performance was evaluated through photodegrading a colorless contaminant bisphenol A (BPA) in an aqueous solution. In comparison with BiOC1, which is not sensitive to visible light, the oxygen-rich Bi12O12Cl2 nanobelts exhibited a drastically enhanced visible-light photoreactivity and were also superior to the well-known photocatalyst TiO2 (P25). The greatly enhanced photocatalytic performance of the Bi12O12Cl2 nanobelts was attributed to their efficient visible light absorption. Our findings might be helpful to explore visible light bismuth-based photocatalysts for pollutant degradation and water treatment. (C) 2016 Elsevier B.V. All rights reserved.