화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.3, 885-891, March, 2017
Electrochemical properties of α-Co(OH)2/graphene nano-flake thin film for use as a hybrid supercapacitor
E-mail:
Porous nano-flake-like α-Co(OH)2 thin films were prepared by electro-deposition on graphene nanosheets (GNS) and functionalized f-GNS at 1.0 V. The functionality of hydrophilic functional groups was increased by acid treatment to enhance electrode wettability and improve the compatibility between the electrode and the electrolyte. Hydrophilic functional groups can act as anchoring sites for the precursors, enabling Co(OH)2 to more grow easily on an f-GNS electrode. The density and thickness of the α-Co(OH)2 deposition on the f-GNS electrode (13.1 μm) was greater than that on the GNS (12.3 μm) electrode. The specific discharge capacitance of the α-Co(OH)2/f-GNS electrode decreased from an initial value of 2,149mFcm-2 to 1,944 mFcm-2 over 1000 cycles, demonstrating the retention of 90% of its discharge capacitance. A hybrid capacitor was also assembled to evaluate the characteristics of a two-electrode system using α-Co(OH)2/f-GNS as the cathode. The power and energy densities of the Co(OH)2/f-GNS supercapacitor are 1,137Wkg-1 and 43Whkg-1 at 8mAcm-2, respectively.
  1. Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C, Electrochim. Acta, 50(20), 4174 (2005)
  2. Luo H, Zheng L, Lei L, Zhang D, Wu J, Yang J, Korean J. Chem. Eng., 31(4), 712 (2014)
  3. Tooming T, Thomberg T, Kurig H, Janes A, Lust E, J. Power Sources, 280, 667 (2015)
  4. Fuertes AB, Sevilla M, Carbon, 94, 41 (2015)
  5. Kalambate PK, Dar RA, Karna SP, Srivastava AK, J. Power Sources, 276, 262 (2015)
  6. Li L, Hu MZA, An N, Yang YY, Li ZM, Wu HY, J. Phys. Chem. C, 118, 22865 (2014)
  7. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW, Nature Commun., 4:1894, 1 (2013).
  8. Hu CC, Chen WC, Electrochim. Acta, 49(21), 3469 (2004)
  9. Cao L, Xu F, Liang YY, Li HL, Adv. Mater., 16(20), 1853 (2004)
  10. Yuan CZ, Hou LR, Shen LF, Li DK, Zhang F, Fan CG, Li JM, Zhang XG, Electrochim. Acta, 56(1), 115 (2010)
  11. Chang JK, Wu CM, Sun IW, J. Mater. Chem., 20, 3729 (2010)
  12. Chen Z, Chen Y, Zuo C, Zhou S, Xiao AG, Pan AX, Bull. Mat. Sci., 36, 239 (2013)
  13. Liu Y, Wang N, Yang C, Hu W, Ceram. Int., 42, 11411 (2016)
  14. Li D, Yu F, Yu Z, Sun X, Li Y, Mater. Lett., 158, 17 (2015)
  15. Zhou FY, Liu QL, Gu JJ, Zhang W, Zhang D, Electrochim. Acta, 170, 328 (2015)
  16. Lee HJ, Jin EM, Jeong SM, Korean Chem. Eng. Res., 54(2), 157 (2016)
  17. Ashassi-Sorkhabi H, Badakhshan PL, Asghari E, Chem. Eng. J., 299, 282 (2016)
  18. Peng TQ, Wang HW, Yi H, Jing YT, Sun P, Wang XF, Electrochim. Acta, 176, 77 (2015)
  19. Hu CC, Chen JC, Chang KH, J. Power Sources, 221, 128 (2013)
  20. Garcia EM, Lins VFC, Matencio T, Intech. Chapter, 5, 101 (2013)
  21. Zhao T, Jiang H, Ma J, J. Power Sources, 196(2), 860 (2011)
  22. Chen CM, Huang JQ, Zhang Q, Gong WZ, Yang QH, Wang MZ, Yang YG, Carbon, 50, 659 (2012)
  23. Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li LH, Chen Y, Fox B, Sci. Reports, 4:4375, 1 (2014).
  24. Dong P, Wang Y, Guo L, Liu B, Xin S, Zhang J, Shi Y, Zeng W, Yin S, Nanoscale, 4, 4641 (2012)
  25. Peng C, Jin J, Chen GZ, Electrochim. Acta, 53(2), 525 (2007)
  26. Yang J, Liu H, Martens WN, Frost RL, J. Phys. Chem. C, 114, 111 (2009)
  27. Wu CM, Fan CY, Sun IW, Tsai WT, Chang JK, J. Power Sources, 196(18), 7828 (2011)
  28. Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, Zhang ML, Qian WZ, Wei F, Adv. Mater., 22(33), 3723 (2010)
  29. Ensafi AA, Ahmadi N, Rezaei B, RSC Adv., 5, 91448 (2015)
  30. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F, Adv. Funct. Mater., 22(12), 2632 (2012)
  31. Cheng Y, Zhang H, Varanasi CV, Liu J, Energy Environ. Sci., 6, 3314 (2013)
  32. Chang J, Jin M, Yao F, Kim TH, Le VT, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee YH, Adv. Funct. Mater., 23, 5074 (2013)