화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.47, 297-302, March, 2017
Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037
E-mail:
In this study, volumetric oxygen mass transfer coefficient (kLa) was selected as a criterion for facilitating the scale up of xylitol production by Candida guilliermondii at the bench and pilot-scale level. A kLa value of 16 h-1 was applied in reactors with volumetric capacity of 2.4 L, 18 L and 125 L. Fermentation was successfully scaled-up from the bench to pilot-scale level with all experiments demonstrating a minimum of 60% xylose to xylitol conversion efficiency. Under all evaluated conditions glycerol and ethanol were also produced as by-products of xylose metabolism. Only minor differences were observed in the fermentation profile when reactor volumes ranging from 2.4 L to 125 L were used for experimentation purposes, reaching, at pilot scale, yield and volumetric productivity of 0.55 g g-1 and 0.31 g L-1 h-1, respectively, with maximum specific growth rate of 0.26 h-1. This demonstrates and reinforces the feasibility of using kLa as scale up criterion. The use of this parameter allowed precise reproduction of results obtained at bench bioreactor level to a larger scale; this is extremely crucial and important information considering that the aim of the proposed biotechnological process is to reach the level required for the industrial viability.
  1. Yoon SH, van Heiningen A, J. Ind. Eng. Chem., 16(1), 74 (2010)
  2. Slininger PJ, Dien BS, Lomont JM, Bothast RJ, Ladisch MR, Okos MR, Biotechnol. Bioeng., 111(8), 1532 (2014)
  3. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R, Bioresour. Technol., 101(13), 4775 (2010)
  4. Rocha GJM, Nascimento VM, Goncalves AR, Silva VFN, Martin C, Ind. Crop. Prod., 64, 52 (2015)
  5. Chandel AK, Antunes FFA, Arruda PV, Milessi TSS, Silva SS, Felipe MGA, in: Silva SS, Chandel AK (Eds.), D-Xylitol: Fermentative Production, Application and Commercialization, Springer-Verlag, Berlin, Heidelberg, 2012 p. 39.
  6. Werpy T, Peterson G, Top Value Added Chemicals From Biomass, Vol. 1-Results of Screening for Potential Candidates From Sugars and Synthesis Gas, first ed., USDOE, Washington, DC, 2004.
  7. Mussatto SI, in: Silva SS, Chandel AK (Eds.), D-Xylitol: Fermentative Production, Application and Commercialization, Springer-Verlag, Berlin, Heidelberg, 2012 p. 309.
  8. Silva AF, Ferreira AS, Silva SS, Raposo NRB, in: Silva SS, Chandel AK (Eds.), D-Xylitol: Fermentative Production, Application and Commercialization, Springer-Verlag, Berlin, Heidelberg, 2012 p. 325.
  9. Barbosa MFS, Medeiros MB, Mancilha IM, Schneider H, Lee H, J. Ind. Microbiol., 3, 241 (1988)
  10. Felipe MGA, in: Saha BC, Hayashi K (Eds.), Lignocellulose Biodegradation, American Chemical Society, New York, 2004 p. 300.
  11. Mohamad NL, Kamal SMM, Mokhtar MN, Food Rev. Int., 31, 74 (2015)
  12. Berovic M, Biotechnol. Bioeng., 64(5), 552 (1999)
  13. Zheng ZM, Guo NN, Hao J, Cheng KK, Sun Y, Liu DH, Process Biochem., 44(8), 944 (2009)
  14. Schmidt FR, Appl. Microbiol. Biotechnol., 68(4), 425 (2005)
  15. Reisman HB, Crit. Rev. Biotechnol., 13, 195 (1993)
  16. Stanbury PF, Whitaker A, Hall SJ, Principles of Fermentation Technology, third ed., Butterworth-Heinemann, Cambridge, 2016.
  17. Roberto IC, Mancilha IM, Sato S, Bioproc. Eng., 21, 505 (1999)
  18. Faria LFF, Gimenes MAP, Nobrega R, Pereira N, Appl. Biochem. Biotechnol., 98-100, 449 (2002)
  19. Branco RF, Santos JC, Murakami LY, Mussatto SI, Dragone G, Silva SS, Process Biochem., 42(2), 258 (2007)
  20. Martinez EA, Silva JBDE, Giulietti M, Solenzal AIN, Enzyme Microb. Technol., 40(5), 1193 (2007)
  21. Rodrigues RDLB, Rocha GJM, Rodrigues D, Filho HJI, Felipe MDA, Pessoa A, Bioresour. Technol., 101(4), 1247 (2010)
  22. Marton JM, Felipe MGA, e Silva JBA, Junior AP, Braz. J. Chem. Eng., 23, 9 (2006)
  23. Da Silva DDV, Felipe MDD, J. Chem. Technol. Biotechnol., 81(7), 1294 (2006)
  24. Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM, Quim. Nova, 32, 1500 (2009)
  25. Kim JH, Ryu YW, Seo JH, J. Ind. Microbiol. Biotechnol., 22, 181 (1999)
  26. Knoshaug EP, Franden MA, Stambuk BU, Zhang M, Singh A, Cellulose, 16, 729 (2009)
  27. Garcia-Ochoa F, Gomez E, Biotechnol. Adv., 27, 153 (2009)
  28. Van’t Riet K, Tramper J, Basic Bioreactor Design, Marcel Dekker, Inc., New York, 1991, pp. 274.
  29. Santos JC, Converti A, de Carvalho W, Mussatto SI, da Silva SS, Process Biochem., 40(1), 113 (2005)
  30. Martinez EA, Santos JAF, Cienc. Tecnol. Aliment., 32, 308 (2012)
  31. Canilha L, Carvalho W, e Silva JBA, J. Sci. Food Agric., 86, 1371 (2006)
  32. Silva CJSM, Mussatto SI, Roberto IC, J. Food Eng., 75(1), 115 (2006)
  33. Neivogt E, Stahl U, Fems Microbiol. Rev., 21, 231 (1997)
  34. Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M, Bioresour. Technol., 102(3), 3304 (2011)
  35. Pal S, Choudhary V, Kumar A, Biswas D, Mondal AK, Sahoo DK, Bioresour. Technol., 147, 449 (2013)